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Abstract

Molecular dynamics (MD) simulations at atomic level have widely
been used in studying macromolecular systems, such as protein, DNA
and their complexes, mainly because the classical statistical mechanic’s
laws can explain different phenomena occurring at specified experimental
conditions. In this study, we will present the most advanced methods used
in the MD simulation of macromolecular systems. Furthermore, a discus-
sion of applications of these methods and perspective on developing new
approaches will be introduced. This study aims to review the methods
that are developed to enhance the conformation sampling of molecular
simulations, in particular, for observing rare events in complex molecular
systems. In the summary, we also present a discussion and perspective
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on the methods described in this chapter and propose the new possible
improvement of these approaches, which could result in further enhance-
ment of conformation sampling.

Keywords: Molecular dynamics simulation, enhanced sampling, rare events,
conformation transitions.

1. Introduction

MD approach at atomic resolution is often used to study complex biomolecu-
lar systems (M. Karplus and J.A. McCammon, 2002), mainly because the clas-
sical statistical mechanic’s laws can explain different phenomena occurring
at specified experimental conditions (van Gunsteren et al., 2006). In partic-
ular, MD is used to study the internal fluctuations (A. Amadei et al., 1993;
M. Karplus and J.A. McCammon, 2002), protein folding dynamics (Rogal and
Bolhuis, 2008), transition path sampling (P. G. Bolhuis et al., 2002), protein-
DNA, protein-protein and protein-ligand complexes, and free energy calcula-
tions (S. L. Seyler and O. Beckstein, 2014). However, standard MD simula-
tion has limited time and size scale, which makes it difficult to study typi-
cal phenomena of macromolecular systems, such as slow conformation mo-
tions (Clarage et al., 1995; Palmer, 1982). Therefore, it has been argued else-
where (G. Ciccotti and E. Vanden-Eijnden, 2015; M. K. Transtrum et al., 2015)
that these limitations may be avoided by employing new statistical and compu-
tational approaches to be studied efficiently.

There have been different efforts in developing new approaches for en-
hancement of conformation sampling of simulations using MD technique, as
discussed elsewhere (van Gunsteren et al., 2006). These MD approaches are
used in many applications for lowering conformation transition barriers by in-
creasing the rate of rare events occurrence by introducing a bias that can be
rigorously removed a posterior, or even without the bias term. Different ap-
proached have been used to introduce bias during MD simulation, such as by
changing the shape of potential energy surface until a (quasi) flat landscape is
obtained (A. Piela et al., 1989; Hamelberg et al., 2004b; Hünenberger and van
Gunsteren, 1997; Laio and Parrinello, 2002a), using soft-core potential interac-
tions (Hünenberger and van Gunsteren, 1997), conformational flooding (Grub-
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müller, 1995), (geometrical) constraints (Wells et al., 2005), or using Tsallis
dynamics (Andricioaei and Straub, 1997). Other approaches include parallel
tempering, such as replica-exchange (Berg and Neuhaus, 1992; Earl and Deem,
2005; Frantz et al., 1990; Marinari and Parisi, 1992; Wang and Swendsen,
1986), multi-canonical algorithms (Y. Okamoto, 2004), and swarm-like dynam-
ics (H. Kamberaj, 2015, 2018; Huber and van Gunsteren, 1998; K. K. Burusco
et al., 2015). For gaining an increase in both time a size scale of the systems,
the coarse-grained models have also shown a great interest, for instance, by de-
creasing the number of interacting particles (I. Bahar and R. L. Jernigan, 1997;
Irbäck et al., 2000; McCammon et al., 1980; Oldziej et al., 2004; Smith and
Hall, 2001a,b; Tozzini, 2005; Tozzini and McCammon, 2005; Tozzini et al.,
2006; Y. Ueda et al., 1978), or reducing the dimensional space to only essential
degrees of freedom (Kamberaj, 2011; Lange and Grubmüller, 2006; Stepanova,
2007). Recently (Dror et al., 2011; Friedrichs et al., 2009), using computer engi-
neering, longer MD simulation runs have been reported scaling from hundreds
of microseconds to milliseconds timescale. Besides, development of multiple
time step integration numerical schemes, such as reference system propaga-
tor algorithm (RESPA), have provided other approaches for extending the time
scales of MD simulations (M.E. Tuckerman et al., 1992; Minary et al., 2004;
Tuckerman and Martyna, 2000).

In this chapter, we will describe in details some of these methods which
are most often used to improve the sampling of configuration space in the MD
simulations. We aim to critically review these methods and provide a discussion
and perspective of the approaches introduced here. Also, we will further discuss
possible improvements of some these methods, which could yield an increase
of sampling efficiency of MD simulation in studying more complex phenomena
of macromolecular systems.

2. Multiple time step integrator

MD simulations of complex molecular systems, such as biomolecules char-
acterized by multiple time scales, show some disadvantage due to the small
time steps used to ensure the stability of numerical integration of the fast mo-
tions. Hence, too many time steps are needed for observation of slow confor-
mation transitions, which practically requires a large number of force computa-
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tions. For these reasons, the Reference System Propagator Algorithm (RESPA)
method is introduced to reduce computational efforts for simulations of such
system (Tuckerman and Berne, 1991a,b; Tuckerman et al., 1990, 1991). The
time-reversible forms of the RESPA methods have also been developed, named
r-RESPA, which have shown to be very stable concerning the order and stability
of numerical integrators (M.E. Tuckerman et al., 1992). The r-RESPA, which
will be discussed below in more details, uses Trotter factorization of the classi-
cal Liouville propagation operator (Creutz and Goksch, 1989; H.D. Raedt and
B.D. Raedt, 1983; Takahashi and Imada, 1984).

Following the discussion in literature (M.E. Tuckerman et al., 1992) (see
also Ref. (M.P. Allen and D.J. Tildesley, 1989)), for a system with f degrees of
freedom the Liouville operator, L, is defined as

iL = {· · · ,H}=
f

∑
j=1

[
ẋ j

∂

∂x j
+ ṗ j

∂

∂p j

]
(1)

where Cartesian coordinates are used with (x j, p j) ≡ Γ the position and con-
jugate momenta of the system, ṗ j gives the force along the jth direction, and
{· · ·} represents the Poisson bracket of the system. L is a linear Hermitian oper-
ator of square integrable function on the phase space of Γ. The time propagation
operator as a function of L is defined by

U(t) = exp(iLt)

which is a unitary: U(−t) = U−1(t). The position and conjugate momenta state
point of the system at a given time t is defined as Γ(t) = U(t)Γ(0), which allows
determining one time step propagation as the following:

Γ(∆t) = exp(iL∆t)Γ(0)

where ∆t = t/P is the size of a time step. Here, t is the total evolution time and
P are the number of integration points.

By splitting the Liouville operator into n different terms, like the following:

iL =
n

∑
k=1

iLk
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and use the Trotter factorization scheme (H.F. Trotter, 1959), then the propaga-
tor becomes

U(t) =

{[
n−1

∑
k=1

Uk(∆t/2)

]
Un(∆t) (2)

×

[
n−1

∑
k=1

Un−k(∆t/2)

]}P

+ O(t3/P2)

where Uk(h) = exp(iLkh). Denoting

G(∆t) =

[
n−1

∑
k=1

Uk(∆t/2)

]
Un(∆t)

×

[
n−1

∑
k=1

Un−k(∆t/2)

]

As shown in Ref. (M.E. Tuckerman et al., 1992), G(∆t)G(−∆t) = 1, therefore,
G(∆t) generates time-reversible dynamics.

The multiple time step integrator is based on splitting the system into the fast
and slow degrees of freedom. Equivalently, decomposing the forces entering
into the equations of motion into long-range forces, Fl(r) and short-range forces
Fs(r) (M.E. Tuckerman et al., 1992):

F(r) = Fs(r)+ Fl(r)

The short-range forces in the system are related to the slow degrees of freedom,
and thus, they determine the multiple time step of the integrator δt. On the other
hand, the long-range forces are related to the fast degrees of freedom, and thus,
they determine the most extended time step of the integrator ∆t. The relationship
is established as

δt =
∆t

NMT S
(3)

where NMT S is the number of multiple steps. Here, the short-range forces are
calculated every time step δt, and long-range forces are calculated after every
NMT S time steps (i.e., every time step ∆t). Hence, the degrees of freedom are ad-
vanced using ∆t as a time step. In the r-RESPA implementation, this procedure
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decreases the number of calls for forces calculations, which reduces, in turn, the
overall computational time.

The basic idea of r-RESPA implementation, as discussed else-
where (M.E. Tuckerman et al., 1992; Minary et al., 2004; Tuckerman and Mar-
tyna, 2000), is on determining a reference system force Fs(r) for short range
interactions. Then, Eq. (1) can be written in the following form:

iL =
f

∑
j=1

(
ẋ j

∂

∂x j
+ Fs(x j)

∂

∂p j
+ Fl(x j)

∂

∂p j

)
(4)

= iLs +
f

∑
j=1

Fl(x j)
∂

∂p j

and the propagator operator is factorized as

G(∆t) =
f

∏
j=1

exp
(

∆t
2

Fl(x j)
∂

∂p j

)
(5)

× exp(iLs∆t)

×
f

∏
j=1

exp
(

∆t
2

Fl(x j)
∂

∂p j

)
where the operator exp(iLs∆t) propagates the state vector using the short range
forces with a shorter time step δt (see Eq. 3). Here, this operator is factorized
using the Trotter formula (M.E. Tuckerman et al., 1992):

exp(iLs∆t) =

[
f

∏
j=1

exp
(

δt
2

Fs(x j)
∂

∂p j

)
(6)

×
f

∏
j=1

exp
(

δtFs(x j)ẋ j
∂

∂x j

)

×
f

∏
j=1

exp
(

δt
2

Fs(x j)
∂

∂p j

)]NMT S

Here, NMT S is usually chosen a priory to guarantee the stability of numerical
integrator (M.E. Tuckerman et al., 1992). Usually, when the operator G(∆t) is
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applied to an initial state (r(0),p(0)), it gives a solution for both position and
velocity similar to Verlet numerical integrator (M.E. Tuckerman et al., 1992).

Following the discussions in Refs. (M.E. Tuckerman et al., 1992;
M. Tuckerman and M. Parrinello, 1994; W.B. Street et al., 1978), for a Lennard-
Jones type of fluid, exists only the translational relaxation time characteristic.
In that case, the integration time step can easily be chosen. On the other hand,
for biomolecules, indeed there exists more than one time-scale. For example, in
addition to the translational and rotational relaxation times, there exists the time
characterizing intra-molecular motion, such as bond stretching, angle bending,
and dihedral angle motion. Furthermore, the inter-molecular motion, including
van der Waals and electrostatic interactions, is of the typical timescale of one or
more orders in magnitude larger than intra-molecular motion. In such cases, the
system is characterized by stiff nonlinear differential equations, which require
the use of a small enough time step to observe fast motion, if treated using one
time-scale.

Other systems that are characterized by more than one timescales are those
consisting of high-frequency oscillators interacting with a bath of slow mo-
tion (Tuckerman et al., 1990), and the systems consisting of large mass particles
(slow degrees of freedom) interacting with lighter ones (fast particles) (Tucker-
man et al., 1991).

The method is also used to treat systems coupled to a Nosé heat bath (Nosé,
1984; S. Nosé, 1984a; W.G. Hoover, 1985) used to keep temperature and/or
pressure fixed during MD simulations. Here, heat bath includes extra fast
degrees of freedom into the system, treated using multiple time stepping al-
gorithms (M.E. Tuckerman et al., 1992), typically, two or more time steps.
The method has been used by many molecular simulation software codes in
performing simulations of complex systems, for example, in CHARMM pro-
gram (B. R. Brooks et al., 2009).

However, the approach is limited by the so-called resonance phenomena,
which restricts the use of time steps higher than ∆t < 8 fs by r-RESPA in
MD simulations of biomolecular systems (Bishop et al., 1997; Ma et al., 2003;
Schlick et al., 1998). It must be noted that not just time-reversible integra-
tors, but also multiple time step symplectic integrators (Skeel et al., 1997)
show numerical instability limiting the use of large time steps (Wolfram, 2002).
According to Ref. (Schlick et al., 1998), the resonance phenomena is the re-
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sult of using the perturbation techniques to derive the numerical integrators.
To overcome these problems, numeric methods have been introduced to in-
crease the time steps in molecular dynamics simulations. For example, non-
symplectic Langevin Molly (LM) integration method (Izaguirre et al., 2001) and
the so-called LN integrator, which combines the force separation approach with
Langevin dynamics (Barth and Schlick, 1998a,b). These methods allow using
more substantial time steps in MD simulations using stochastic approaches to
increase the numerical stability of integration. A stable version of r-RESPA
integrator has also been introduced, named the Targeted Mollified Impulse
method (Ma and Izaguirre, 2003), which includes the Langevin dynamics to
improve the accuracy of multiple time stepping integrator.

In Ref. (Minary et al., 2004), authors discuss a reversible, resonance-free
integrator which allows for using time steps of the order up to 100 fs or even
larger depending on the time length correlations studied. This integrator uses
non-Hamiltonian dynamics, which are shown to sample a canonical distribution
of physical configuration space (Minary et al., 2004)

(q1,q2, · · · ,q3N)≡ ((x1,y1,z1), · · · , (xN ,yN ,zN))

Here, we have written the equations of motion governing dynamics by modify-
ing those given in Ref. (Minary et al., 2004) as the following:

q̇i =
pi

mi
, (7)

ṗi = Fi−λi pi−P(s)
1 pi

η̇
(i) =−

L

∑
j=1

Q(i)
1 (ξ

(i)
1, j)

2

kBT
ξ

(i)
2, j−

M

∑
k=2

ξ
(i)
k, j


ξ̇

(i)
1, j =−ξ

(i)
1, jξ

(i)
2, j−λ

(i)
b ξ

(i)
1, j−λiξ

(i)
1, j

j = 1, · · · ,L

ξ̇
(i)
k, j =

G(i)
k, j

Q(i)
k

−ξ
(i)
k+1, jξ

(i)
k, j

j = 1, · · · ,L; k = 2, · · · ,M−1
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ξ̇
(i)
M, j =

G(i)
M, j

Q(i)
M, j

, j = 1, · · · ,L

ṡi,k = P(s)
i,k , k = 1, 2, · · · , M

Ṗ(s)
i,k =

Γi,k

Wi,k
−P(s)

i,k+1P(s)
i,k , k = 1, 2, · · · , M−1

Ṗ(s)
i,M =

Γi,M

Wi,M
,

for i = 1,2, · · · f ( f = 3N), where

λi =
1

2K(p,ξ)

(
piFi

mi

)
(8)

λ
(i)
b =

1
2K(p,ξ)

(
−L−1

L

L

∑
j=1

Q(i)
1 ξ

(i)
2, j(ξ

(i)
1, j)

2

)
(9)

2K(p,ξ) =
p2

i

mi
+

L−1
L

L

∑
j=1

Q(i)
1 (ξ

(i)
1, j)

2 (10)

which ensures that maximum total kinetic energy accumulated in each degree
of freedom is LkBT . In Eq. 7, M is the Nosé-Hoover chain length of ther-
mostats, ξ

(i)
k, j (k = 1, · · · ,M and j = 1, · · · ,L) are the thermostat velocities asso-

ciated with Lagrangian multiplier along the i degrees of freedom and η(i) is the
corresponding thermostat coordinate, which is used to control the accumulated
kinetic energy fluctuations. Fi is Newton’s force on the i degrees of freedom.
The thermostat forces G(i)

k, j are defined as

G(i)
k, j = Q(i)

k−1(ξ
(i)
k−1, j)

2− kBT, (k = 2, 3, · · · , M) (11)

for ( j = 1, · · · ,L), were L is an adjustable parameter. Here, kB is the Boltz-
mann constant and Q(i)

k determine fictitious thermostat masses optimized in
Refs. (G. J. Martyna et al., 1992; S. Nosé, 1984b):

Q(i)
k = kBT τ, k = 1,2, · · · ,M (12)
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where τ is a time scale associated with the thermostat. λi and λ
(i)
b are the La-

grangian multipliers which are determined such that equations of motion have
to satisfy the following constraint:

2K(p,ξ) = LkBT

In Eqs. 7, si,k and P(s)
i,k are, respectively, the thermostat coordinates and their

associated velocities (k = 1, · · · ,M) at temperature T for ith degrees of freedom
of the real system. Thermostat forces Γi,k are defined as

Γi,1 =
p2

i

mi
− kBT (13)

Γi,k = Wi,k−1

(
P(s)

i,k−1

)2
− kBT, k = 2, · · · ,M

Wi,k are thermostat masses determined by Eq. 12, as in Refs. (G. J. Martyna
et al., 1992; S. Nosé, 1984b).

Eqs. 7 can be numerically solved using the Liouville operator formalism and
Trotter factorization schemes as suggested elsewhere (Minary et al., 2004) (and
the references therein). The classical Liouville operator can be expressed as:

iL =
f

∑
d=1

[
v̇d

∂

∂vd
+ q̇d

∂

∂qd
(14)

+
M

∑
k=1

L

∑
j=1

ξ̇
(d)
k, j

∂

∂ξ
(d)
k, j

+ η̇
(d) ∂

∂η(d)

+
M

∑
k=1

Ṗ(s)
d,k

∂

∂P(s)
d,k

+ ṡd,k
∂

∂sd,k


which can then be decomposed for every degree of freedom d as

iL =
f

∑
d=1

iL(d) =
f

∑
d=1

[
iL(d)

1 +
Nd

∑
n=1

iL(d)
2,n + iL(d)

NHC

]
where

iL(d)
1 = vd

∂

∂qd
+ η̇

(d) ∂

∂η(d)
+

M

∑
k=1

ṡd,k
∂

∂sd,k
(15)
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iL(d)
2,n =

(
F(n)

d

m(n)
d

−λ
(n)
d v(n)

d −P(s)
d,1v(n)

d

)
∂

∂v(n)
d

+
Γ

(n)
d,1

Wd,1

∂

∂P(s)
d,1

−
L

∑
j=1

λ
(n)
d ξ

(d)
1, j

∂

∂ξ
(d)
1, j

n = 1,2, · · · ,Nd

iL(d)
NHC =

M

∑
k=2

L

∑
j=1

G(d)
k, j

Q(d)
k, j

∂

∂ξ
(d)
k, j

−
M−1

∑
k=1

L

∑
j=1

ξ
(d)
k, j ξ

(d)
k+1, j

∂

∂ξ
(d)
k, j

−
L

∑
j=1

λ
(d)
b ξ

(d)
1, j

∂

∂ξ
(d)
1, j

+
M

∑
k=2

Γd,k

Wd,k

∂

∂P(s)
d,k

−
M−1

∑
k=1

P(s)
d,kP(s)

d,k+1
∂

∂P(s)
k

where Nd is the number of parts that the force on every degree of freedom can
be split, that is

Fd =
Nd

∑
n=1

F(n)
d

for each degree of freedom d (d = 1, 2, · · · , f ). Here, vd is the velocity of
the d-the degree of freedom, vd ≡ q̇d = pd/md . Note that it is assumed that
the force’s strength is decreasing with n. Introducing the multiple time step
parameters (Minary et al., 2004):

δt =
∆t

NMT S
, NMT S =

Nd

∏
n=1

sn (16)

sNd = 1, wn =
n−1

∏
k=1

sk, w1 = 1

Using the Trotter factorization scheme for classical Liouville operator, as sug-
gested in Ref. (Minary et al., 2004), then the approximation of true evolution
can be written as:

Γ(∆t)≈
{

eiL̃(t)
Nd

δt · · ·
(

eiL̃(t)
2 δt
[
eiL̃1δt

]s1−2
(17)
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× eiL̃2δt
)s2−2

· · ·eiL̃Nd δt
}

Γ(0)

where

eiL̃kδt = eiL(d)
NHC

δt
2 (18)

× eiL(d)
2,1

δt
2 eiL(d)

1 δte∑
k
n=1 iL(d)

2,nwn
δt
2

× eiL(d)
NHC

δt
2

for each degree of freedom d (d = 1, 2, · · · , f ). Thus, the weak or long-range
forces correspond to large values of n, and hence are calculated less often, but
they are weighted with larger wn to equalize they time step with that of short-
range forces, where

sn =
wn+1

wn

gives the ratio of strengths between (n + 1) and n forces. It can be seen that the
number of n force evaluations is NMT S/wn. The error in one time step is O(∆t3),
and for the entire trajectory of length t, it is O(t∆t2) (Minary et al., 2004). An-
alytical solutions can be obtained for each of the exponential factorized parts of
the classical Liouville operator using the following relations:

exp
(

a
∂

∂x

)
f (x) = f (x + a), (19)

exp
(

ax
∂

∂x

)
f (x) = f (eax)

where a is a constant. Furthermore, Nosé-Hoover part iLNHC of the classical op-
erator can also be decomposed using Trotter factorization schemes as suggested
in Ref. (G. J. Martyna et al., 1996).

The method, using an unmodified version of Eq. 7 as in Ref. (Minary et al.,
2004), has been implemented in the PINY-MD software (M. E. Tuckerman
et al., 2000) and it is applied for different test systems, including a protein
studied in vacuo using CHARMM22 force field (Jr et al., 1998). The results
published in Ref. (Minary et al., 2004) have shown that large time steps of
∆ = 100 f s provided perfect agreement with other methods using much smaller
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time steps. Efforts should be made to also include the solvent as a part of the
system and check the efficiency of the method in the simulation of large macro-
molecular systems in the solvent. Future work should also focus on the compar-
ison of the efficiency of sampling conformation equilibrium space of such com-
plex systems using other methods discussed below or combining this method
with other enhanced sampling techniques.

3. Generalized ensemble methods

It has been suggested (Hansmann and Okamoto, 1993) that generalized-
ensemble can be used for a better sampling of configurations characterized by
lower energies in computer simulations. This class of methods includes ap-
proaches, such as multicanonical sampling (Berg and Neuhaus, 1991, 1992),
the broad histogram method (de Oliveira, 1998; de Oliveira et al., 1996), Wang-
Landau algorithm (Wang and Landau, 2001), Tsallis weights methods (Tsal-
lis, 1988), and parallel tempering or replica exchange method (Geyer, 1992;
K. Hukushima and K. Nemoto, 1996; Penna, 1995). These methods are often
used to study the dynamics of biomolecular systems (Hansmann and Okamoto,
1999).

All of the above mentioned generalized-ensemble approaches have the same
starting point, that is, the replacement of canonical Boltzmann-like weights at
temperature T

exp(−β∆E)

with non-Boltzmann weights, which allows the system escaping from the local
minimum states. Here, ∆E represents the energy barrier height and β is the
inverse temperature of the simulation, β = 1/kBT .

In the canonical ensemble (characterized by fixed N, V , and T ), each state
point, (r,p), in the phase space is associated with a Boltzmann weight, which is
defined in terms of the Hamiltonian function H(r,p):

WB(r,p,β) = exp(−βH(r,p)) (20)

Since momentum p and coordinates r are independent, we can integrate ac-
cording to the momentum space Eq. 20, and re-write the Boltzmann factor as a



i
i

“Chapter.ID_55380_6x9_Proofs_2” — 2019/1/11 — 8:17 — page 14 — #14 i
i

i
i

i
i

14 Hiqmet Kamberaj

function of the instantaneous value, E, of the potential energy function U(r):

WB(E,β) = exp(−βE) (21)

The probability distribution function of a canonical ensemble is proportional
to the product of WB(E,β) and the density of states Ω(E):

P(E,β) ∝ Ω(E)WB(E,β)

Here, Ω(E) is a monotonically increasing function of the energy E. Since
WB(E,β) is a monotonically decreasing function of E, then P(E,β) has a Gaus-
sian shape distribution with a maximum around average energy E for a fixed
inverse temperature β. In a typical MD simulation, due to sampling problems,
accurate calculation of Ω(E) is not possible, especially, at low temperatures and
complex systems, which can be trapped at some local minimum energy state.

Here, we will discuss how these weights are chosen for those methods which
are most often used in molecular dynamics simulations.

3.1. Multicanonical sampling method

The main aim of the multicanonical ensemble (the so-called MUCA) is to mul-
tiply the states with a non-Boltzmann multicanonical factor, Wmu(E), which
yields a uniform probability energy distribution, Pmu(E) (Berg and Neuhaus,
1991, 1992):

Pmu(E) ∝ Ω(E)Wmu(E)≡ constant (22)

Since probability is uniform (i.e., flat), the multicanonical ensemble achieves
free random walks is in the potential energy space. In this way the system
is able to escape faster any local energy minimum state, hence enhancing the
configuration phase space sampling in an MD simulation. From Eq. 22, we can
calculate the non-Boltzmann weight as

Wmu(E)≡ exp(−βEmu(E,β0)) ∝
1

Ω(E)
(23)

where Emu(E,β0) is the multicanonical potential energy function given by

Emu(E,β0) = kBT0 lnΩ(E) =
1

kBβ0
S(E) (24)
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where S(E) = kB lnΩ(E) is the entropy function of the microcanonical ensemble
and β0 is the multicanonical inverse temperature.

The density of states is practically unknown a priory, therefore, the non-
Boltzmann’s weights Wmu(E) are determined, in general, using short MD simu-
lation runs (Berg and Neuhaus, 1991, 1992), and this is one of the limitations of
standard multicanonical ensemble approach, which can be overcome by com-
bining MUCA with other methods as discussed in the following sections.

The implementation of the MUCA in MD simulation is conveniently intro-
duced by modifying equations of motion with new forces, F̃i, acting on particles
as (Bartels and Karplus, 1998; Hansmann et al., 1996; Nakajima et al., 1997):

F̃i =−∂Emu(E,β0)

∂qi
(25)

=
∂Emu(E,β0)

∂E
Fi, i = 1, 2, · · · , f (26)

where Fi is the Newton force acting on the i degree of freedom. Eqs. 7 describing
the dynamics of a system in the multicanonical ensemble are re-written as

q̇i =
pi

mi
(27)

ṗi =
β(E)

β0
Fi−λi pi−P(s)

1 pi

η̇
(i) =−

L

∑
j=1

Q(i)
1 (ξ

(i)
1, j)

2

kBT
ξ

(i)
2, j−

M

∑
k=2

ξ
(i)
k, j


ξ̇

(i)
1, j =−ξ

(i)
1, jξ

(i)
2, j−λ

(i)
b ξ

(i)
1, j−λiξ

(i)
1, j

j = 1, · · · ,L

ξ̇
(i)
k, j =

G(i)
k, j

Q(i)
k

−ξ
(i)
k+1, jξ

(i)
k, j

j = 1, · · · ,L; k = 2, · · · ,M−1

ξ̇
(i)
M, j =

G(i)
M, j

Q(i)
M, j

j = 1, · · · ,L
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ṡi,k = P(s)
i,k , k = 1, 2, · · · , M

Ṗ(s)
i,k =

Γi,k

Wi,k
−P(s)

i,k+1P(s)
i,k , k = 1, 2, · · · , M−1

Ṗ(s)
i,M =

Γi,M

Wi,M
,

where β defines the simulation inverse temperature, such as

β(E0) =
1
kB

(
∂S(E)

∂E

)
E0

The multicanonical weighting factor is usually determined by short trial MD
simulation runs at high temperature T0 using a canonical ensemble (Berg and
Celik, 1992; Okamoto and Hansmann, 1995), as described by Eqs. 7. From
these trial runs, we can then determine{

E(1)
mu (E,β0) = E

W (1)
mu (E,β0) = WB(E,β0) = exp(−β0E)

A maximum value of energy Emax is determined as an average of potential
energy function at temperature T0:

Emax = 〈E〉T0

Then, for E ≤ Emax, a flat energy distribution is achieved, and for E > Emax, we
obtain the canonical ensemble distribution at T0. At every MD time step, t, the
probability distribution weighting factor is given by:

W (t)(E,β0) = exp
(
−β0E(t)(E,β0)

)
Then, a histogram N(t)(E) is accumulated for distribution P(t)

mu(E) of potential
energy. Denoting by E(t)

min the minimum energy value obtained until the t time
step. For the (t + 1) time step, the multicanonical potential energy is obtained
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as

E(t+1)
mu (E,β0) =



E, E ≥ Emax

E(t)
mu(E,β0)+

1
β0

ln
(
N(t)(E)

)
− c(t),

E(t)
min ≤ E < Emax

β(t+1)(E(t)
min)

β0

(
E−E(t)

min

)
+E(t+1)

mu (E(t)
min,β0), E < E(t)

min

(28)

where c(t) are used to ensure the continuity of energy function at E = Emax,
determined as

c(t) =
1
β0

ln
(

N(t)(Emax)
)

The MD simulation continues until a reasonably flat potential energy func-
tion is obtained, which is determined by comparing the values of energy for
all E < Emax and requiring to be of the same order of magnitude. After this
convergence is reached, E(t)

min should be equal to the global minimum potential
energy function value. Note that during MD simulation, a polynomial or some-
times a cubic spline function (Y. Sugita and Y. Okamoto, 2000) is used to fit the
histograms each MD simulation time step (Nakajima et al., 1997).

Long MD simulation in a multicanonical ensemble is performed, after the
optimal weighting factor is obtained. Then, the ensemble average of any phys-
ical quantity, A , is determined using the Weighted Histogram Analysis Method
(WHAM) (Gallicchio et al., 2005), which is described in details, for the general
case, in Section 3.10..

3.2. The Wang-Landau multicanonical method

In the Wang-Landau method (WLM), a random walk in the energy space with
probability proportional to the density of states Ω(E):

P(E) ∝
1

Ω(E)
(29)

generates a flat energy distribution (Wang and Landau, 2001). To achieve this
the estimated density of states is modified systematically until a flat distribution
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is produced in the energy space. In this procedure, simultaneously, the density
of states converges to the true value, by controlling a so-called modification
factor at each iteration step. At the end of the simulation, this modification
factor becomes very close to one, representing a random walk with the true
density of states (Wang and Landau, 2001).

Initially, the density of states, Ω(E), is unknown, therefore, it is set to one:

Ω(E) = 1, ∀E

Then, a sampling of energy space is performed with a probability given by
Eq. 29. In general, if E1 and E2 are two energy states, then the transition proba-
bility from state E1 to E2 is

P(E1→ E2) = min
[

Ω(E1)

Ω(E2)
,1
]

(30)

Every time an energy state E is visited, we multiply existing density of states
by the factor γ > 1 (Wang and Landau, 2001)

Ω(E)→Ω(E)γ (31)

or in algorithmic scale

ln(Ω(E))→ ln(Ω(E))+ ln(γ) (32)

If the move is rejected, then E remains unchanged, and we modify the current
Ω(E) with the same factor γ. In the first publication (Wang and Landau, 2001),
the suggested initial value of factor γ is

γ = γ0 = e1 = 2.71828

which allows faster convergence of Ω(E) to the true density of states even for a
very large system. On the other hand, as discussed in Ref. (Wang and Landau,
2001), if γ0 is too small, then the convergence is extremely slow. However,
values of γ0 being too large will produce high statistical errors.

During the simulation a histogram H(E) is accumulated, representing
counts for every visited energy bin, E, by the system. After histogram becomes
flat in the sampled energy range, we say Ω(E) has converged to the true value
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with an accuracy proportional to the factor ln(γ). Then, the modification factor
is decreased according to (Wang and Landau, 2001)

γ1 =
√

γ0

At this moment, the histogram is reset, and the random walk sampling restarts.
Now, the density of states is multiplied by a smaller value of factor γ1 at each
step. The algorithm continues in this way, and each time that the histogram
becomes flat, the modification factor is decreased as (Wang and Landau, 2001)

γi+1 =
√

γi

The algorithm stops when

γfinal = exp
(
10−8)≈ 1.00000001

It can be seen that the accuracy is controlled by estimating the density of states
and the length of a simulation by a factor γ. In addition to γfinal, the accuracy of
estimating Ω(E) depends on the complexity and size of the system, criterion of
the flat histogram, and algorithm’s implementation (Wang and Landau, 2001).

In MD simulations WLM is implemented by modifying equations of motion
for the multicanonical method, as in Refs. (Hansmann et al., 1996; Nakajima
et al., 1997). Here, we purpose to modify equations of motion, given by Eqs. 27,
as the following

q̇i =
pi

mi
(33)

ṗi =
β

β0
Fi−λi pi−P(s)

1 pi

η̇
(i) =−

L

∑
j=1

Q(i)
1 (ξ

(i)
1, j)

2

kBT
ξ

(i)
2, j−

M

∑
k=2

ξ
(i)
k, j


ξ̇

(i)
1, j =−ξ

(i)
1, jξ

(i)
2, j−λ

(i)
b ξ

(i)
1, j−λiξ

(i)
1, j

j = 1, · · · ,L (34)

ξ̇
(i)
k, j =

G(i)
k, j

Q(i)
k

−ξ
(i)
k+1, jξ

(i)
k, j
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j = 1, · · · ,L; k = 2, · · · ,M−1

ξ̇
(i)
M, j =

G(i)
M, j

Q(i)
M, j

j = 1, · · · ,L

ṡi,k = P(s)
i,k , k = 1, 2, · · · , M

Ṗ(s)
i,k =

Γi,k

Wi,k
−P(s)

i,k+1P(s)
i,k , k = 1, 2, · · · , M−1

Ṗ(s)
i,M =

Γi,M

Wi,M
,

where

β0 =
d lnΩ(E)

dE
(35)

with β and β0 being, respectively, the inverse simulation and multicanonical
temperatures. Note that the Wang-Landau application in MD simulation con-
sists in calculation of density of states Ω(E) from Eq. 31 or Eq. 32, then using
Eq. 35 to run MD simulation (T. Nagasima et al., 2007). In order to calculate
accurately Ω(E) and hence β0, a histogram bin of energy distribution is esti-
mated, and the bin width will determine the accuracy of calculation of Ω(E)
and β0 since it defines the ruggedness of energy distribution (T. Nagasima et al.,
2007). To smooth the ruggedness, the energy distribution is approximated by
a Gaussian distribution, and then, WHAM can be used to estimate Ω(E) and
multicanonical inverse temperature.

The method has found application to Ising spin lattice systems (Landau
et al., 2004; Wang and Landau, 2001). It has been used to study the confor-
mation transitions of proteins using confined lattice models (Pattanasiri et al.,
2012), protein folding (Wüst and Landau, 2012), and optimizing temperature
distribution in replica exchange method (H. Kamberaj and A. van der Vaart,
2009).

3.3. Tsallis statistics molecular dynamics method

In the Tsallis statistics molecular dynamics (TSMD) approach (Tsallis, 1988),
the principle of maximum generalized entropy is employed to obtain the gener-
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alized statistical mechanic’s formalism. The probability weights can be deter-
mined as (Tsallis, 1988)

WT (E,β) = [1 +(q−1)β(E−E0)]
−

q
q−1

q is an adjustable parameter taking real values and E0 is the system’s ground en-
ergy. Note that WT (E,β) > 0. Besides, for q→ 1, the Boltzmann’s weight can
be obtained, and for q > 1, probability distribution has longer tails. The long
tails of the Tsallis distribution have inspired construction of generalized distri-
butions which will enhance the excursion towards regions with higher energy by
decreasing the magnitude of the force close to these regions. This increases the
rate of barrier crossing and hence allows the system escaping the local minimum
energy states (A. Karolak and A. van der Vaart, 2012; Andricioaei and Straub,
1997; H. Kamberaj and A. van der Vaart, 2007; J. Kim and J. E. Straub, 2009;
Sugita and Okamoto, 1999).

The aim of Tsallis statistical ensemble is to weight each state by a weighting
factor, WT(E,β) (Sugita and Okamoto, 1999):

PT(E,β) ∝ Ω(E)WT(E,β) (36)

The implementation of Tsallis statistics in MD simulations is obtained by defin-
ing the Tsallis weights as the following (Sugita and Okamoto, 1999)

WT (E,β) = exp(−βUeff)

where Ueff is an effective potential defined as

Ueff(E,β) =
q

β(q−1)
ln(1 + β(q−1)(E−E0)) (37)

In the new generalized ensemble, MD simulations use the new potential
function Ueff, which replaces the old one E. The new forces that drive Newton’s
equations of motion are written as (Sugita and Okamoto, 1999)

F̃i =−∂Ueff(E,β)

∂qi

=
∂Ueff(E,β)

∂E
Fi



i
i

“Chapter.ID_55380_6x9_Proofs_2” — 2019/1/11 — 8:17 — page 22 — #22 i
i

i
i

i
i

22 Hiqmet Kamberaj

=
1

1 + β(q−1)(E−E0)
Fi

Fi is the Newton force on particle i (i = 1,2, · · · ,N). Then, the equations of mo-
tion describing a generalized canonical ensemble according to Tsallis statistics
can be given as the following:

q̇i =
pi

mi
(38)

ṗi =
1

1 + β(q−1)(E−E0)
Fi−λi pi−P(s)

1 pi

η̇
(i) =−

L

∑
j=1

Q(i)
1 (ξ

(i)
1, j)

2

kBT
ξ

(i)
2, j−

M

∑
k=2

ξ
(i)
k, j


ξ̇

(i)
1, j =−ξ

(i)
1, jξ

(i)
2, j−λ

(i)
b ξ

(i)
1, j−λiξ

(i)
1, j

j = 1, · · · ,L

ξ̇
(i)
k, j =

G(i)
k, j

Q(i)
k

−ξ
(i)
k+1, jξ

(i)
k, j

j = 1, · · · ,L; k = 2, · · · ,M−1

ξ̇
(i)
M, j =

G(i)
M, j

Q(i)
M, j

j = 1, · · · ,L

ṡi,k = P(s)
i,k , k = 1, 2, · · · , M

Ṗ(s)
i,k =

Γi,k

Wi,k
−P(s)

i,k+1P(s)
i,k , k = 1, 2, · · · , M−1

Ṗ(s)
i,M =

Γi,M

Wi,M
,

TSMD has successfully been employed to different molecular systems, such
as simulation of atomic clusters (Andricioaei and Straub, 1996, 1997),
protein folding (I. Fukuda and H. Nakamura, 2002; S. Jang et al., 2008;
U. H. E. Hansmann and Y. Okamoto, 1997; Y. Pak and S. Wang, 1999), and
molecular docking (Y. Pak and S. Wang, 2000). The approach has also been
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implemented with replica exchange method by replacing Boltzmann’s weights
with Tsallis weighting factors for each replica (J. Kim and J. E. Straub, 2009;
S. Jang et al., 2003; T. W. Whitfield et al., 2002).

3.4. Swarm particle-like molecular dynamics method

As we mentioned above, Eqs. 7 can be used to describe the Nosé-Hoover dy-
namics (Hoover, 1985; S. Nosé, 1984b) of a system of N atoms coupled to a
chain of thermostats (G. J. Martyna et al., 1992). Recently (H. Kamberaj, 2015)
a new approach was introduced based on the swarm particle social intelligence,
which is tested to improve the conformational sampling (H. Kamberaj, 2015,
2018). In this approach, in addition to the Newtonian forces, a random force
is exerted on each particle (H. Kamberaj, 2015). This is similar to Langevin
dynamics (Schlick, 2010). In particular, the MD equations of motion given by
Eqs. 7 can be modified following Ref. (H. Kamberaj, 2015) as:

q̇i =
pi

mi
(39)

q̇Lbest
i =

pLbest
i
mi

δ
(
U(q) <U

(
qLbest)) ,

q̇Gbest
i =

pGbest
i
mi

δ
(
U(q) <U

(
qGbest)) ,

ṗi = Fi−λi pi−P(s)
1 pi (40)

+
m

∑
j=1

Pi j
(
γ1u1(cLbest

j − c j)+ γ2u2(cGbest
j − c j)

)
ṗLbest

i =−γ1u1(qLbest
i −qi)

ṗGbest
i =−γ2u2(qGbest

i −qi)

η̇
(i) =−

L

∑
j=1

Q(i)
1 (ξ

(i)
1, j)

2

kBT
ξ

(i)
2, j−

M

∑
k=2

ξ
(i)
k, j


ξ̇

(i)
1, j =−ξ

(i)
1, jξ

(i)
2, j−λ

(i)
b ξ

(i)
1, j−λiξ

(i)
1, j

j = 1, · · · ,L
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ξ̇
(i)
k, j =

G(i)
k, j

Q(i)
k

−ξ
(i)
k+1, jξ

(i)
k, j

j = 1, · · · ,L; k = 2, · · · ,M−1

ξ̇
(i)
M, j =

G(i)
M, j

Q(i)
M, j

j = 1, · · · ,L

ṡi,k = P(s)
i,k , k = 1, 2, · · · , M

Ṗ(s)
i,k =

Γi,k

Wi,k
−P(s)

i,k+1P(s)
i,k , k = 1, 2, · · · , M−1

Ṗ(s)
i,M =

Γi,M

Wi,M
,

where the vector c = (c1,c2, · · · ,cm)T characterizes the essential degrees of free-
dom in the system. Projection operator, P, transforms the real coordinates q to
the so-called collective coordinates c according to:

c j =
f

∑
i=1

Pi jqi

In Eq. 39, {cLbest
j }m

j=1 and {cGbest
j }m

j=1 are defined as (H. Kamberaj, 2018):

cLbest
j =

f

∑
i=1

Pi jqLbest
i

cGbest
j =

f

∑
i=1

Pi jqGbest
i

which are updated every time step. Here, qLbest is configuration vector with the
lowest value of the potential energy of the system and qGbest is configuration
vector of the final state of the system.

In Eq. 39 ui (i = 1,2) denotes a uniformly distributed random number in
(0,1), and γ1 and γ2 are adjustable parameters.

In Eq. 39, the δ function is given as:

δ
(
U(q) <U

(
qLbest))=

{
1, if U(q) <U

(
qLbest

)
0, otherwise
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and

δ
(
U(q) <U

(
qGbest))=

{
1, if U(q) <U

(
qGbest

)
0, otherwise

The augmented dynamical system, which is given by Eq. (39) , sample an equi-
librium canonical distribution with conserved total energy given by:

Eext =
f

∑
i=1

p2
i

2mi
(41)

+

(
f

∑
i=1

(
pLbest

i
)2

2mi

)
δ
(
U(q) <U

(
qLbest))

+

(
f

∑
i=1

(
pGbest

i
)2

2mi

)
δ
(
U(q) <U

(
qGbest))

︸ ︷︷ ︸
Etot,kin

+U(q)+
1
2

f

∑
j=1

[
u1γ1

(
qLbest

j −q j
)2

+ u2γ2
(
qGbest

j −q j
)2
]

︸ ︷︷ ︸
Ubias

+
f

∑
i=1

M

∑
k=1

(
Qi,kξ2

i,k

2
+ kBT si,k

)
︸ ︷︷ ︸

Ethermo

where f is the total number of degrees of freedom of the system ( f = 3N).
These equations represent an extended phase space of the augmented dynamical
system with real variables:(

(qi, pi) ,
(
qLbest

i , pLbest
i

)
,
(
qGbest

i , pGbest
i

))
, i = 1,2, · · · , f

and thermostats variables:

(si,k,ξi,k) , i = 1,2, · · · , f ; k = 1,2, · · · ,M

In Eq. 41, Etot,kin is the total kinetic energy of augmented system, Ubias is the
total potential energy including bias term, and Ethermo is the thermostat energy.
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WHAM is used to recover the equilibrium canonical distribution of the real sys-
tem (H. Kamberaj, 2015, 2018). The augmented dynamical system is shown
to sample metastable (H. Kamberaj, 2018) and rare transition events (Hummer
and Szabo, 2010), and to enhance the conformation sampling (Andricioaei and
Straub, 1997; J. Kim and J. E. Straub, 2009). In Eq. (39), the first bias term
steers the system towards the state with the lowest energy, which has been vis-
ited at any instant time t and hence enhancing the local basin sampling. Besides,
the second bias term indicates the “information" about configuration with the
lowest energy ever visited, and hence enhancing the barrier crossing rate.

3.5. Replica exchange method

Another class of methods that use the generalized distributions for sampling the
conformation phase space is also the so-called temperature Replica Exchange
Method (REM) (Earl and Deem, 2005; Falcioni and Deem, 1999; Neal, 1996;
Sugita and Okamoto, 1999; Wang and Swendsen, 1986). REM is often used
to solve the problems of quasi-ergodicity in simulations of (bio)molecular sys-
tems. In REM, replicas representing the system are simulated independently
at different temperatures (Wang and Swendsen, 1986). In particular, consider
a system of N atoms each with a mass mi, position vector ri = (xi, yi, zi), and
conjugated momentum pi = (pxi, pyi, pzi). In standard REM the generalized
ensemble corresponds to L independent replications of the original system cou-
pled to L thermostats at different temperatures. Using Nosé-Hoover dynam-
ics (Hoover, 1985; S. Nosé, 1984b), each replica is in equilibrium with a chain
of thermostats (G. J. Martyna et al., 1992) and the equations of motion are given
here as the following for each replica α:

q̇i,α =
pi,α

mi
(42)

ṗi,α = Fi,α−λi,α pi,α−P(α,s)
1 pi,α

η̇
(i,α) =−

L

∑
j=1

Q(i,α)
1 (ξ

(i,α)
1, j )2

kBTα

ξ
(i,α)
2, j −

M

∑
k=2

ξ
(i,α)
k, j


ξ̇

(i,α)
1, j =−ξ

(i,α)
1, j ξ

(i,α)
2, j −λ

(i,α)
b ξ

(i,α)
1, j −λi,αξ

(i,α)
1, j

j = 1, · · · ,L
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ξ̇
(i,α)
k, j =

G(i,α)
k, j

Q(i,α)
k

−ξ
(i,α)
k+1, jξ

(i,α)
k, j

j = 1, · · · ,L; k = 2, · · · ,M−1

ξ̇
(i,α)
M, j =

G(i,α)
M, j

Q(i,α)
M, j

j = 1, · · · ,L

ṡ(α)
i,k = P(α,s)

i,k , k = 1, 2, · · · , M

Ṗ(α,s)
i,k =

Γ
(α)
i,k

W (α)
i,k

−P(α,s)
i,k+1P(α,s)

i,k , k = 1, 2, · · · , M−1

Ṗ(α,s)
i,M =

Γ
(α)
i,M

W (α)
i,M

Two neighboring thermostats (e.g., i and j) swap at regular interval of times
their configurations (replicas) with probability, Pacc, which preserves the de-
tailed balance (Sugita and Okamoto, 1999; Wang and Swendsen, 1986):

Pacc = min
{

1,exp(−(β j−βi)(Ei−E j))
}

(43)

where Ei and E j correspond to the total energies of replicas i and j, respec-
tively. In REM, high-temperature replicas are able to cross more often energy
barrier. On the other hand, low-temperature replicas sample more often poten-
tial energy basins. It has been suggested (H. Fukunishi et al., 2002) that the
number of replicas scales as the square root of system’s degrees of freedom.
Note that increasing the number of replicas requires longer simulation runtime,
which is necessary to optimize the rate of round trips between the two extreme
temperatures.

Omitting the solvent degrees of freedom through the use of implicit or
hybrid explicit/implicit solvent models (A.E. Garcia and J.N. Onuchic, 2003;
A. Okur et al., 2006; D. Bashford and D.A. Case, 2000; R. Zhou, 2003; R. Zhou
and B.J. Berne, 2002) have increased the efficiency of REM. Another approach
includes the use of separate heat baths for the solute and solvent (X. Cheng
et al., 2005). It has been argued (A.E. Garcia and J.N. Onuchic, 2003; P. Liu
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et al., 2005; R. Zhou, 2003; R. Zhou and B.J. Berne, 2002) that reductions in
system size may not accurately describe the structure and dynamics of the sys-
tem.

Other approaches, similar to REM, are also proposed. For instance, the
Hamiltonian Replica Exchange Method (HREM) (H. Fukunishi et al., 2002).
An HREM with biasing the backbone dihedral potentials yielded a reduction
in the number of replicas (K. Srinivasaraghavan and M. Zacharias, 2007). In
resolution HREM approach, which uses implicit solvent models only (E. Lyman
et al., 2006; P. Liu and G.A. Voth, 2007), in addition to different temperature
couplings, the replicas exchange a subset of configuration coordinates from a
coarse-grained model (E. Lyman et al., 2006).

Use of temperature scaling for the solvent-solvent and solvent-protein inter-
actions in REM has also shown to reduce the number of replicas (P. Liu et al.,
2005), which has further been improved by using the Tsallis biasing poten-
tial (H. Kamberaj and A. van der Vaart, 2007).

Efforts have also been made to optimize the distribution of tempera-
tures among the replicas as in Refs. (A. Kone and D.A. Kofke, 2005; Berg,
2004; C. Predescu et al., 2004; D.A. Kofke, 2002; Escobedo and Martinez-
Veracoechea, 2007; Gront and Kolinski, 2007; H.G. Katzgraber et al., 2006;
Li et al., 2007; Nadler and Hansmann, 2007; N. Rathore et al., 2005; Pre-
descu et al., 2005; Sabo et al., 2008; S. Trebst et al., 2004, 2006; Sugita and
Okamoto, 1999). Some of these methods (Escobedo and Martinez-Veracoechea,
2007; H.G. Katzgraber et al., 2006; Nadler and Hansmann, 2007; S. Trebst
et al., 2004, 2006) have particularly been important in studying the protein
folding/unfolding transitions, which represent a difficult case study in standard
REM because of the low rate of accepted swaps between replicas across the
transition temperature (Huang et al., 2007; S. Trebst et al., 2006).

To further increase the efficiency of REM, other approaches to REM have
also been proposed (H. Kamberaj and A. van der Vaart, 2009), which aims to
obtain a flat generalized probability distribution function in temperature space
using the Wang-Landau algorithm (F. Wang and D.P. Landau, 2001a,b). The
method addresses two problems of REM: it increases the probability of swap-
ping, and it decreases the bottleneck for exchange at the transition temperature.

Note that a WHAM is used for analyzing the data from all replicas (see
Section 3.10.).
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3.6. Swarm particle-like replica exchange method

More recently (H. Kamberaj, 2015), a combination of replica exchange
method with Swarm Particle-like Molecular Dynamics (SPMD) is introduced.
SPMD showed to improve conformation sampling when applied to Lennard-
Jones atomic cluster systems (H. Kamberaj, 2015) and protein folding prob-
lems (H. Kamberaj, 2018) when combined with replica exchange approach.
Here, the equations of motion given in Ref. (H. Kamberaj, 2018) are modified
as the following:

q̇i,α =
pi,α

mi
(44)

q̇Lbest
i,α =

pLbest
i,α

mi
δ
(
U(qα) <U

(
qLbest

α

))
,

q̇Gbest
i,α =

pGbest
i,α

mi
δ
(
U(qα) <U

(
qGbest

α

))
,

ṗi,α = Fi,α−λi,α pi,α−P(α,s)
1 pi,α (45)

+
m

∑
j=1

Pi j

(
γ1u1(cα,Lbest

j − c(α)
j )

+ γ2u2(cGbest
j − c(α)

j )
)

ṗLbest
i,α =−γ1u1(qLbest

i,α −qi,α)

ṗGbest
i,α =−γ2u2(qGbest

i,α −qi,α)

η̇
(i,α) =−

L

∑
j=1

Q(i,α)
1 (ξ

(i,α)
1, j )2

kBTα

ξ
(i,α)
2, j −

M

∑
k=2

ξ
(i,α)
k, j


ξ̇

(i,α)
1, j =−ξ

(i,α)
1, j ξ

(i,α)
2, j −λ

(i,α)
b ξ

(i,α)
1, j −λi,αξ

(i,α)
1, j

j = 1, · · · ,L

ξ̇
(i,α)
k, j =

G(i,α)
k, j

Q(i,α)
k

−ξ
(i,α)
k+1, jξ

(i,α)
k, j

j = 1, · · · ,L; k = 2, · · · ,M−1
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ξ̇
(i,α)
M, j =

G(i,α)
M, j

Q(i,α)
M, j

j = 1, · · · ,L

ṡ(α)
i,k = P(α,s)

i,k , k = 1, 2, · · · , M

Ṗ(α,s)
i,k =

Γ
(α)
i,k

W (α)
i,k

−P(α,s)
i,k+1P(α,s)

i,k , k = 1, 2, · · · , M−1

Ṗ(α,s)
i,M =

Γ
(α)
i,M

W (α)
i,M

,

where all the variables have the same meaning as in Eq. 39 for the replica α

and {cGbest
j }m

j=1 is related to the global best coordinates qGbest corresponding to
configuration with the lowest energy among all replicas through the projection
operator P:

cGbest
j =

f

∑
i=1

Pi jqGbest
i

It has been shown elsewhere (H. Kamberaj, 2018) that the Eqs. 44 preserve
the detailed balance condition. Following Ref. (H. Kamberaj, 2018), assum-
ing that a Markovian chain of states is formed, the probability of obtaining a
trajectory in the configuration space of the replica k can be written as:

Pk(Xk
T ) = exp(−βkE(xk,0))

T−1

∏
t=0

π(xk,t → xk,t+1) (46)

with βk being the inverse temperature of the thermostat k. In Eq. 46 E(xk,t) is the
total energy obtained for the configuration xk,t . Here, Xk

T represent T replicas
of the system:

Xk
T = {xk,0→ xk,1→ ··· → xk,T−1}

The initial configurations of each replica are obtained from a canonically dis-
tributed with an initial unbiased energy of the system for replica k E(xk,0):

ρinit(xk,0) = exp(−βkE(xk,0))
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In Eq. 46, π(xk,t → xk,t+1) is the propagation probability at each time step,
which depend on the details of deterministic or stochastic dynamics. In general,
the Markovian transition probability π(xk,t → xk,t+1) can have any distribution
that conserves the Boltzmann distribution. Here, π(xk,t → xk,t+1) represents the
action characterized by augmented system given in Eq. (44), which produces a
Boltzmann distribution in the extended phase space of variables. In the general
case of the Newtonian dynamics, we can write:

p(xt → xt+1) = δ(xt+1−Φ∆t(xt))

where δ is the delta function and Φ∆t(xt) is the discrete flow map of one time
step ∆t propagation operator. In this case, a trajectory can be generated using
an initial state sampled from some canonical distribution and then propagating
in time using usual Hamiltonian dynamics. Note that for Hamiltonian dynamics
is easy to find a time-reversible discrete flow map. On the other hand, when
dynamics are governed by Eq. (44), the structure is not symplectic, but still, it
is time reversible.

It is important to note that WHAM can be used for analyzing the data
from all replicas in the case of REM:SPMD simulation as presented in
Refs. (H. Kamberaj, 2015, 2018) (see Section 3.10.).

3.7. Replica exchange multicanonical method

To overcome the problems of standard REM (e.g., the large number of replicas
and high computational demands) and of MUCA (e.g., difficulties on deter-
mining the weighting factor), a new method has been proposed called replica
exchange multicanonical (REMUCA) (Y. Sugita and Y. Okamoto, 2000). In
REMUCA, the first step is to perform a short replica exchange method simula-
tion (e.g., of L replicas) to calculate the multicanonical weighting factor. Then,
a standard multicanonical simulation run is performed using this weighting fac-
tor. The multiple-histogram re-weighting technique (Ferrenberg and Swendsen,
1989; Kumar et al., 1992) can be used to calculate the energy density of states
as described in the next section (see 3.10.).

After we obtain the energy density of states, the multicanonical weighting
factor is obtained from Eq. 23 and Eq. 24. Note that the multicanonical energy
Emu(E,β0) obtained in this way is determined in the range between 〈E〉T1 and
〈E〉TL , where T1 and TL denote the lowest and highest temperature, respectively,
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used in the replica exchange simulation. While outside this interval the potential
energy of multicanonical simulation is determined through extrapolation:

E(0)
mu (E) =



(
∂Emu(E,β0)

∂E

)
E1

(E−E1)

+Emu(E1,β0), E < E1
Emu(E,β0), E1 ≤ E ≤ EL(

∂Emu(E,β0)

∂E

)
EL

(E−EL)

+Emu(EL ,β0), E > EL

(47)

In multicanonical MD simulations, Eq. 25 (or Eq. 27) is used to govern New-
ton’s dynamics where Emu(E,β0) is replaced by E(0)

mu (E). Then, after the sim-
ulation run, the trajectories are analyzed using WHAM for a single run, as de-
scribed in the next section.

Eq. 47 can also be written as

E(0)
mu (E) =



T0

T1
(E−E1)+ T0S(E1) =

T0

T1
E + constant,

E < E1 = 〈E〉T1

T0S(E), E1 ≤ E ≤ EL
T0

TL
(E−EL)+ T0S(EL) =

T0

TL
E + constant,

E > EL = 〈E〉TL

(48)

and the dynamical equations of motion are defined here as:

q̇i,α =
pi,α

mi
(49)

ṗi,α =−λi,α pi,α−P(α,s)
1 pi,α +



β1

β0
Fi,α, E < E1 = 〈E〉T1

βα(E)

β0
Fi,α, E1 ≤ E ≤ EL

βL
β0

Fi,α, E > EL = 〈E〉TL

η̇
(i,α) =−

L

∑
j=1

Q(i,α)
1 (ξ

(i,α)
1, j )2

kBTα

ξ
(i,α)
2, j −

M

∑
k=2

ξ
(i,α)
k, j


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ξ̇
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G(i,α)
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Q(i,α)
k
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(i,α)
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(i,α)
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j = 1, · · · ,L; k = 2, · · · ,M−1

ξ̇
(i,α)
M, j =

G(i,α)
M, j

Q(i,α)
M, j

j = 1, · · · ,L

ṡ(α)
i,k = P(α,s)

i,k , k = 1, 2, · · · , M

Ṗ(α,s)
i,k =

Γ
(α)
i,k

W (α)
i,k

−P(α,s)
i,k+1P(α,s)

i,k , k = 1, 2, · · · , M−1

Ṗ(α,s)
i,M =

Γ
(α)
i,M

W (α)
i,M

From Eq. 23, the Boltzmann’s factor depends on temperature T and energy
E, and hence, scaling potential energy (and so the force) by a constant κ is
similar to scaling the temperature by 1/κ (Hansmann et al., 1996; R. Yamamoto
and W. Kob, 2000). Therefore, E(0)

mu given by Eq. 47 (or Eq. 48) generates a
canonical ensemble distribution at T = T1, multicanonical ensemble distribution
for E1 ≤ E ≤ EL , and canonical ensemble distribution simulation at T = TL for
E > EL .

3.8. Multicanonical replica exchange method

The replica exchange method in multicanonical simulation, REMUCA, can
also be introduced as a multicanonical replica exchange method (MU-
CAREM) (Y. Sugita and Y. Okamoto, 2000). In MUCAREM, the final MD
simulation run is a replica exchange with fewer replicas, say L , in contrast to
REMUCA, where the final run is a standard multicanonical MD simulation.
Since the degree of energy probability distribution overlapping in a multicanon-
ical simulation is higher compared to canonical one, a fewer number of replicas
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are needed for the final simulation run to guarantee an optimal distribution of
replicas among thermostats.

In MUCAREM, similar to REMUCA, short replica exchange MD simula-
tions are performed with L replicas and L thermostats, covering a temperature
range from T1 to TL. During this short simulation run, we can estimate the en-
ergy density of states Ω(E) for all range of energy using WHAM techniques.
After we define the density of states Ω(E), we can chose L pairs of thermostats
with temperatures (T (m)

L ,T (m)
H ), for m = 1,2, · · · ,L , where T (m)

L < T (m)
H . In prac-

tice, the temperatures are arranged such that ensure sufficient overlapping be-
tween neighboring pairs. Here, we have T (1)

L = T1 and T (L)
H = TL , and E(m)

L = 〈E〉
T (m)

L
,

E(m)
H = 〈E〉

T (m)
H

, m = 1,2, · · · ,L
(50)

Then, we chose L thermostats at temperatures T1,T2, · · · ,TL and assign to
each the multicanonical potential as

E(m)
mu (E) =



(
∂Emu(E,Tm)

∂E

)
E(m)

L

(E−E(m))

+Emu(E(m)
L ,Tm), E < E(m)

L

Emu(E,Tm), E(m)
L ≤ E ≤ E(m)

H(
∂Emu(E,Tm)

∂E

)
E(m)

H

(E−E(m))

+Emu(E(m)
H ,Tm), E > E(m)

H

(51)

where the multicanonical potential energy, Emu(E,T ), is obtained for the entire
interval of energy. Also, this choice of E(m)

mu (E) generates a canonical distribu-
tion at T = T (m)

L for E <E(m)
L , a multicanonical distribution for E(m)

L ≤E ≤E(m)
H ,

and a canonical distribution simulation run at T = T (m)
H for E > E(m)

H .
In final step of MUCAREM, the production run is defined as a replica ex-

change simulation with L different thermostats at temperatures T1,T2, · · · ,TL

and multicanonical potential energies, E(1)
mu (E),E(2)

mu (E), · · · ,E(L)
mu (E). The tran-

sition probability of swapping two replicas of neighboring temperatures is given
by

w(x(i)
m | x( j)

m+1) =

{
1, ∆≤ 0
exp(−∆), ∆ > 0

(52)



i
i

“Chapter.ID_55380_6x9_Proofs_2” — 2019/1/11 — 8:17 — page 35 — #35 i
i

i
i

i
i

Advanced Methods Used in Molecular Dynamics ... 35

where

∆ = βm+1

[
E(m+1)

mu (E(q(i)))−E(m+1)
mu (E(q( j)))

]
(53)

−βm

[
E(m)

mu (E(q(i)))−E(m)
mu (E(q( j)))

]
Here, the multicanonical potential energies, E(m)(E(q( j))) and E(m+1)(E(q(i))),
have to be calculated since E(m)(E) has different values for m (Y. Sugita et al.,
2000).

Using the multiple-histogram reweighting method, the canonical distribu-
tion can be obtained (Ferrenberg and Swendsen, 1989; Kumar et al., 1992), as
presented in Section 3.10..

3.9. Tsallis replica exchange methods

Tsallis’s weight factor for a configuration q at inverse temperature β` has the
following general form (J. Kim and J. E. Straub, 2009):

W`(q) =
[
1−β`(1−q`)(U(q)−U (0)

` )
] q`

1−q` (54)

where U (0)
` is a reference minimum value of the potential energy U(q) at Tsal-

lis entropy parameter q` of replica ` associated with thermostat held at inverse
temperature β`. Note that in the limit when q`→ 1, the Boltzmann’s weight of
standard MD simulation can be obtained:

WB(q)∼ exp
(
−β`(U−U (0))

)
There may exist two approaches of applying Tsallis-like replica exchange

method. In the first implementation (named q-REM) L replicas are initially
setup running at different values of q` for ` = 1,2, · · · ,L and equal temperature
T as proposed (S. Jang et al., 2003). While in a second implementation, the
Tsallis-like dynamics is incorporated with REM in the form of the generalized
ensemble (TSREM) (T. W. Whitfield et al., 2002). In TSREM implementation,
L replicas are associated with L thermostats at different inverse temperatures β`

and Tsallis entropy parameter q` (` = 1,2, · · · ,L). Usually, in both implemen-
tations the reference replica samples the phase space using MD simulation with
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original potential energy function, that is, it has q` = 1 and β` = β0, where β0 is
the required inverse temperature. On the other hand, the other replicas sample
using biased potential energy function associated with effective potential energy
that is given by Eq. 37 (i.e., q` > 1 for all replicas ` > 1).

In Tsallis-like REM a swapping between two neighboring replicas 1 and 2
has an acceptance probability given by

Pacc(1↔ 2) = min [1,exp(−∆12)] (55)

where

∆12 = β2 (Ueff,2(q1;q2,T2)−Ueff,2(q2;q2,T2)) (56)

+ β1 (Ueff,1(q2;q1,T1)−Ueff,1(q1;q1,T1))

where Ueff,1 and Ueff,2 are the effective Tsallis potential energy of replica 1 and
2, respectively.

Close to the barrier regions, the magnitude of the force, because of low-
ering the barriers, is reduced for q larger than one (Andricioaei and Straub,
1997; Plastino and Anteneodo, 1997). Therefore, in these regions resistance on
the particles decreases and the barrier crossing rates increases. However, the
largest value of q has to be carefully determined after some preliminary test
runs depending on the system. It is empirically suggested (H. Kamberaj and
A. van der Vaart, 2007; U. H. E. Hansmann and Y. Okamoto, 1999) an upper
value as q = 1 + 1/ f , where f is the number of degrees of freedom.

A more general approach for optimization of q values has been suggested in
Ref. (van Giessen and Straub, 2005). Based on this approach, expression of ∆12
in Eq. 56 is written as

∆12 =
1
kB

q1∫
q2

[
1

T2(z)
− 1

T1(z)

]
dz (57)

where T is the effective Tsallis temperature given as

kBT (q;q,T ) =

(
∂(βUeff)

∂U

)−1

U



i
i

“Chapter.ID_55380_6x9_Proofs_2” — 2019/1/11 — 8:17 — page 37 — #37 i
i

i
i

i
i

Advanced Methods Used in Molecular Dynamics ... 37

The performance of either q-REM or TSREM will directly depend on the
rate of accepted replica attempted swaps, defined by the average Pacc of accep-
tance probability of each swapping attempt:

Pacc(1↔ 2) =
∫

dq1dq2P1(q1)P2(q2)min [exp(−∆12)]

where Pi(qi) is the probability that replica i has a configuration qi or energy
U(qi), which can be written

Pi(qi)≡ Pi(U) = Ω(U)WT,i(U) (58)

where Ω(U) represents the energy density of states and WT,i(U) Tsallis weight-
ing factor of replica i. Eq. 58 can further be simplified as (van Giessen and
Straub, 2005):

Pacc(1↔ 2) =
∫

dUdU ′θ(∆12)P1(U)P2(U ′) (59)

+
∫

dUdU ′θ(−∆12)P1(U ′)P2(U)

where θ(∆) denotes the Heaviside step function:

θ(x) =

{
1, x > 0
0, otherwise

and ∆i(U,U ′) = −∆i(U ′,U), from which we can obtain (van Giessen and
Straub, 2005):

Pacc(1↔ 2) = 2
∫

dUdU ′P1(U)P2(U ′)θ(∆12) (60)

The optimal Pacc(1↔ 2) is obtained by maximizing the overlapping integrals
between two neighboring Tsallis probability distribution functions. For that, we
can approximate the function of Pi(U) by local expansion around the stationary
point U0 as (van Giessen and Straub, 2005):

lnPi(U) = lnPi(U0)− 1
2σq

(U−U0)2 + · · · (61)

where U0 is the energy where both Tsallis effective temperature and statistical
temperature, TS(U) are equal:

TS(U0) = T (U0)
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where

TS(U0) =

(
∂S
∂U

)−1

U0

where S(U) is the microcanonical entropy:

S(U) = kB lnΩ(U)

In Eq. (61) σq denotes the width of Tsallis probability density function at Gaus-
sian approximation given by (van Giessen and Straub, 2005):

σq(U0) =

[
T ′S(U)

T 2
S (U)

− T ′i (U)

T 2
i (U)

]−1

U0

(62)

where

T ′S(U) =
∂TS

∂U
, T ′i (U) =

∂Ti

∂U
.

If TS(U) is assumed to be linear function of U around U0, then T ′S(U) is a con-
stant. Furthermore, the equivalence between the microcanonical and canonical
ensembles indicates that this constant is 1/CV (T0), thus

T ′S(U0) = 1/CV (T0)

Then, we obtain (van Giessen and Straub, 2005)

σq(U0) =
σ0

1−κ
(63)

where

κ = (qi−1)CV (T0), σ0 = T 2
0 CV (T0)

where T0 = TS(U0) and σ0 is the Gaussian width of the canonical probability
density function at temperature T0.

It can be seen from Eq. 63 that in the limit of qi → 1, which is the limit
of Boltzmann distribution, σq→ σ0, corresponding to a Gaussian distribution.
Moreover, if 1 < qi < 1 + qc, where

qc = T ′S(U0) =
1

CV (T0)
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then σq > σ0 (Eq. 63), and hence Tsallis probability density function, Pi(U),
has a broader distribution than canonical function at T0. Whereas, for qi <
1, Pi(U) becomes narrower compare to canonical probability density function.
However, in both cases, Tsallis distribution has its maximum at stable point U0
as canonical distribution at T0. For qi = 1+qc, the Tsallis effective temperature,
T (U), it is tangential to canonical temperature TS(U) function at U0, and Pi(U)
is locally flat around U0, indicating only marginal stability. Thus, the choice qi =
1 + qc generates the most delocalized Tsallis distribution for standard Tsallis
MD simulation run. For qi > qc, the local minimum of Pi(U), namely U0, is an
unstable crossing point (van Giessen and Straub, 2005).

The WHAM is used to estimate the averages of unbiased system quanti-
ties at required temperature T0 (H. Kamberaj and A. van der Vaart, 2007). The
configuration probability density for each replica k (k = 1,2, · · · ,K) at inverse
temperature β` (` = 1,2, · · · ,L) is written as

P(U ;qk,β`) =
1

Zqk
k`

(64)

×Ω(U)
[
1 + β`(qk−1)(U−U (0))

] qk
1−qk

where U is unbiased potential energy, Ω(U) is density of states, Zk` is configu-
ration partition function:

Zk` =
∫

dUΩ(U)
[
1 + β`(qk−1)(U−U (0))

]ql/(1−qk)

The canonical distribution at the required inverse temperature β0 is given by

P(U ;β0) = fk`P(U ;qk,β`)exp
(

β`Ubias
k −β0U

)
(65)

where Ubias
k is the bias potential energy function of replica k and

fk` =
Zqk

k`
Z0

or

P(U ;qk,β`) = f−1
k` P(U ;β0)exp

(
−
(

β`Ubias
k −β0U

))
(66)

Further details of the method are presented in Section 3.10..
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3.10. The weighted histogram analysis method

The WHAM is often used to analyze the data from replica exchange molecular
dynamics simulation. This is considered an efficient technique of data pro-
cessing since it combines all the data from replicas. In WHAM, it assumed
that K copies of the same system (namely the replicas) are in equilibrium with
L thermostats at inverse temperature β` (` = 1,2, · · · ,L). In addition, to each
replica unbiased potential energy, U`(qk) (` = 1,2, · · · ,L; k = 1,2, · · · ,K) a bi-
asing potential energy term is added ∆U`(qk). Then, a histogram of M bins
is created for the unbiased potential energy combining all of the replicas, with
Um (m = 1,2, · · · ,M) being the energy at the center of the bin. Thus, for each
replica k and histogram unbiased potential energy bin m we count the number
of independent snapshots, namely Hkm. The probability of observing the system
at energy bin m and thermostat ` is defined as (Gallicchio et al., 2005):

P̀ m = Z−1
` C`mΩme−β0Um (67)

where Ωm = Ω(Um) is the density of states at the energy bin m and the constant
C`m determines both the effect of temperature and biasing potential in probabil-
ity distribution as:

C`m = exp(−(β`−β0)Um)× exp(−β`∆U`) (68)

In Eq. 67, Ωme−β0Um gives the unbiased probability of the bin m at the target
temperature and Z` is the partition function at β`. Note that ∑

M
m=1 P̀ m = 1 must

be satisfied. Combining Eq. 67 and Eq. 68 we obtain:

P̀ m = Ωme−β`(Ubias
m −F̀ ) (69)

where Ubias
m gives the value of biased potential energy at the center of bin m and

F̀ is the Helmholtz free energy, which has to be estimated, given as

F̀ =−(1/β`) lnZ`

Let nk` be the number of saved snapshots from replica k visiting thermostat `,
then the accumulated probability density for energy bin m can be determined as:

Pm = Ωm

K

∑
k=1

L

∑
`=1

nk`

Nk
e−β`(Ubias

m −F̀ ) (70)
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where Nk is the total number of saved snapshots from the replica k. Pm can also
be approximated as (Chodera et al., 2007):

Pm ≈
K

∑
k=1

Hkm

Nk
(71)

Using the last two equations, we obtain

Ωm =

K
∑

k=1
Hkm

K
∑

k=1

L
∑
`=1

nk`e−β`(Ubias
m −F̀ )

(72)

F̀ =− 1
β`

ln
M

∑
m=1

Ωme−β`Ubias
m

To take into account any possible correlations between configurations saved
from simulations, the histogram bin statistical inefficiency for each energy bin m
from replica k, gkm, can be introduced (Chodera et al., 2007), which determines
the effective number of snapshots from replica k with unbiased potential energy
falling in bin m, Heff

km, and the effective number of snapshots from replica k in
equilibrium with thermostat `, neff

k` :

Heff
km =

Hkm

gkm
; neff

k` =
nk`

gkm

Then, the estimated value of the density of states Ω̂m is given as:

Ω̂m =

K
∑

k=1
Heff

km

K
∑

k=1

L
∑
`=1

neff
k` e−β`(Ubias

m −F̀ )

(73)

F̀ =− 1
β`

ln
M

∑
m=1

Ω̂me−β`Ubias
m

From Eq. 73, Ω̂m depends on F̀ , and F̀ also depends on Ω̂m. Therefore,
F̀ and Ω̂m are usually determined iteratively from Eqs. 73, starting from some
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arbitrary choice F̀ = 0 (` = 1,2, · · · ,L) and continuing until a convergence is
reached. The statistical error σ2

Ω̂m
of Ω̂m is given by (Chodera et al., 2007):

σ
2
Ω̂m

=
Ω̂m

K
∑

k=1

L
∑
`=1

neff
k` e−β`(Ubias

m −F̀ )

(74)

The estimated average value of any physical quantity A of the system at the
target inverse temperature β0 is computed by summing the weighted values from
all configurations:

Â(β0) =

K
∑

k=1

Nk

∑
n=1

Wkn(β0)Akn

K
∑

k=1

Nk

∑
n=1

Wkn(β0)

(75)

In Eq. (75) Wkn(β0) are the weights given by

Wkn(β0) =
M

∑
m=1

Ω̂m

Hkm
e−β0Um

The chain rule of error propagation is used to obtain the statistical error of
Â(β0) (Chodera et al., 2007):

σ
2
Â =

(
〈X〉
〈Y 〉

)2(
σ2

X

(〈X〉)2 +
σ2

Y

(〈Y 〉)2 −2
σ2

XY

〈X〉〈Y 〉

)
(76)

where

〈X〉=
1

Nk

Nk

∑
n=1

Wn(β0)An (77)

〈Y 〉=
1

Nk

Nk

∑
n=1

Wn(β0) (78)

σ
2
X =

gX

Nk(Nk−1)

Nk

∑
n=1

(Wn(β0)An−〈X〉)2 (79)

σ
2
Y =

gY

Nk(Nk−1)

Nk

∑
n=1

(Wn(β0)−〈Y 〉)2 (80)
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σ
2
XY =

gXY

Nk(Nk−1)

Nk

∑
n=1

(Wn(β0)An−〈X〉) (81)

× (Wn(β0)−〈Y 〉)

Here, gX(Y,XY ) are the statistical inefficiencies determined from (auto)correlation
functions of replica exchange simulations.

If ∆U` = 0 (` = 1,2, · · · ,L), the standard WHAM of replica exchange simu-
lations is obtained, discussed already in the literature. (Chodera et al., 2007)

4. Metadynamics method

Metadynamics method has been developed by Alessandra Laio & Michele Par-
rinello (Laio and Parrinello, 2002b). The method consists on finding a limited
number of essential collective coordinates, ci (i = 1, 2, · · · , m), upon which the
free energy depends on F(c). At any moment of time t, the free energy sur-
face is explored based on the dynamical equations of motion determined by the
forces acting on the system:

f t
i =−∂F

∂ct
i

In metadynamics method, a bias potential function Ubias(c) is constructed that
is added to the Hamiltonian function of system. This bias potential is written
as a sum of Gaussian distributions, which are added at any time t of the tra-
jectory in subspace expanded by collective coordinate as generated during the
MD simulation. The main effect of the bias potential is to not allow the system
visiting configurations that are already explored. The mathematical form of the
bias potential is (Barducci et al., 2011; Laio and Parrinello, 2002b)

Ubias(c, t) =
∫ t

0
dt ′ωexp

(
−

m

∑
i=1

(ci(t)− ci(t ′))2

2σ2
i

)
Here, ω gives the rate of energy change on time:

ω =
W
τ
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where W and τ are the Gaussian height and the time interval of deposition,
respectively (Barducci et al., 2011). Here, σi is the Gaussian distribution width
of collective coordinate i. W , τ and σ are adjustable parameters to optimize the
algorithm (Laio and Parrinello, 2002b).

The main benefit of using metadynamics method is being able to escape
from the local minimum free energy metastable states, and hence it increases
the rate of sampling rare events. Besides, the metadynamics method allows
sampling of new reaction pathways after the system escapes local minimum
states (Barducci et al., 2011). In the metadynamics method, there is no need for
a priory knowledge of the exact topology of the free energy landscape.

After a certain long time, metadynamics technique will eventually give a
bias potential Ubias (Laio et al., 2005):

Ubias(c, t→ ∞) =−F(c)+C

where C is an integration constant, F(c) is the underlying free energy of system,
defined as

F(c) =−1
β

ln
(∫

drδ(c− c(r))e−βU(r)

)
where r is the vector of coordinates, β = 1/kBT and U(r) is the potential en-
ergy function. This formula has been tested for simplified models (Laio et al.,
2005) and for other complex systems (Gervasio et al., 2005; Laio and Parrinello,
2002b). A formal proof of this expression is shown in Ref. (Bussi et al., 2006).

The free energy surface can be obtained up to an uncertainty, which is in-
versely proportional to the inverse temperature β and intrinsic diffusion coeffi-
cient D of the system in collective coordinates subspace (Gervasio et al., 2005;
Laio et al., 2005):

ε ∝

(
ω

Dβ

)1/2

In practical applications of metadynamics method, ε is estimated by comparing
different independent simulation runs (Angioletti-Uberti et al., 2010; Barducci
et al., 2006; Provasi and Filizola, 2010) or using block averaging (Pfaendtner
et al., 2009).
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The main advantage of using metadynamics method include parallelization,
which is an intrinsic property of metadynamics. For instance, one can run multi-
ple interacting copies of metadynamics simulations for reconstruction of a free
energy surface, where every simulation contributes to the time-dependent po-
tential (Raiteri et al., 2006). The implementation of method yields an algorithm
that scales very well linearly with the number of processors, independent on the
type of processor.

However, there are two disadvantages of the metadynamics simulations.
The first, in single metadynamics simulation the convergence of bias potential
Ubias is not reached to a constant value, but it oscillates about a constant value,
making the criteria for stopping the simulation too tricky in practice (Barducci
et al., 2011). The second disadvantage is related to the identification of collec-
tive coordinates for describing complex topological free energy is very difficult.

The well-tempered metadynamics method (Barducci et al., 2008) provides
a solution to the first problem of standard metadynamics. In this method, the
rate of bias accumulation decreases over the course of the simulation, which is
made possible using this expression for the bias potential:

U ′bias(c, t) = kB∆T ln
(

1 +
ωN(c, t)

kB∆T

)
where N(c, t) is a histogram accumulated during the simulation for collective
variables c and ∆T a free parameter with dimensions of temperature. The deriva-
tive U ′bias(c, t) with respect to time t is

U̇ ′bias(c, t) =
ωδc,c(t)

1 +
ωN(c, t)

kB∆T

= ωexp
(
−U(c, t)

kB∆T

)
δc,c(t)

The new approach can easily be related to standard metadynamics by taking
δc,c(t) to be a Gaussian function. This is practically implemented by defining
the height of a Gaussian W as

W = ωτexp
(
−Ubias(c, t)

kB∆T

)
There are two main characteristics of the well-tempered metadynamics

compare to standard metadynamics (Barducci et al., 2011). The first, rate of bias
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accumulation decreases with simulation time as 1/t and the deviations from the
equilibrium dynamics are small. Secondly, a convergence of the bias potential
is reached up to a constant value, C, though a complete compensation of the free
energy surface is not obtained:

Ubias(c, t→ ∞) =− ∆T
T + ∆T

F(c)+C

In long run simulation, the collective coordinates probability distribution be-
comes:

P(c) ∝ exp
(
− F(c)

kB(T + ∆T )

)
where for ∆T → 0, standard MD simulations are recovered, and for ∆T →∞ we
have standard metadynamics. In contrast to standard metadynamics, in well-
tempered metadynamics, the bias potential converges to a finite value during
one run. For all other values of ∆T the extent of free energy surface exploration
is determined by adjusting ∆T (Barducci et al., 2011).

5. Umbrella sampling methods

Umbrella sampling method is developed in Refs. (G.M. Torrie and J. P. Valleau,
1977; Torrie and Valleau, 1974). This technique adds a bias term to the potential
energy function applied to the system, which ensures efficient sampling along
the path of a reaction coordinate. The bias term can be added in a single simula-
tion run or in multiple copies of simulations (often called windows) with over-
lapping distributions. The umbrella sampling method aims to connect regions
of phase space that are separated by high energy barriers, which is a reason for
naming it the umbrella sampling.

The bias potential as a function of the reaction coordinate, let say q, has the
following form:

Ubias(q) =−F(q)

where F(q) is not usually known a priory. The umbrella sampling aims to
calculate the F(q) by employing two main types of bias potentials, such as
harmonic biases consisting of a set of windows centered at different points along
q and adaptive bias modeled to match −F(q) in only one window enveloping
the whole range of q.
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5.1. Harmonic bias potentials

In this approach, the entire range of values of q is divided into a subset of small
size windows, Nw. Then, a bias potential function is employed in every window
allowing the system to fluctuate around a reference point qref

i centered at the
window i of the form (Kästner, 2011):

Ui,bias(q) =
ki

2
(
q−qref

i
)2

(82)

Free energy curves calculated in this way are combined using WHAM tech-
nique (Ferrenberg and Swendsen, 1989; Kumar et al., 1992). From Eq. (82), the
bias potential Ubias is characterized by ki, which can also be adjusted depending
on the window, number of windows, Nw, and qref

i .
In general, qref

i are chosen uniformly distributed in all range of q. In prac-
tice (Frenkel and Smit, 2002), there is a compromise between the statistical
errors and computational time required. For instance, increasing the number
of windows results in a smaller statistical error, but longer computational time
is needed. However, the advantage is that MD simulations in each window
are completely independent, and hence they can run in parallel by producing
multiple MD simulation copies, which takes into account the advantage of the
parallelism of computer architecture available. This approach has already been
used in atomistic simulations of protein folding (Nymeyer et al., 2004).

Combination of the umbrella sampling with replica exchange have also been
suggested (Auer and Frenkel, 2004) to improve the conformational sampling.
Strength, ki, of the bias potential, has to be chosen before simulation runs, such
that the bias potential allows steering the system across potential energy barri-
ers. On the other hand, too large ki will cause very narrow probability distri-
butions. Often, if the probability distributions have too large gaps between the
windows, then additional windows could also be inserted. Overlapping between
distributions at each window has to be sufficiently large for WHAM and it could
also be advantageous in umbrella integration (Kästner and Thiel, 2006). Large
values of ki can also lead to instability of numerical integration of the equations
of motion unless small time steps are used. In addition, for too large values of
ki only the configurations with high energies will be sampled (Straatsma and
McCammon, 1991).

The statistical error can also be derived analytically as a function of ki (Käst-
ner and Thiel, 2006). Location of the next sampled window (qref

i+1) can be chosen
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as (Woolf and Grossfield, 2002)

qref
i+1 = qref

i + wi

where wi is the window width. Alternatively, the experimental data can also be
used to determine optimized values of bias parameters (Mills and Andricioaei,
2008).

5.2. Adaptive bias umbrella sampling

On the other hand, this method aims to screen the entire interval of interest for
the reaction coordinate q in a single simulation run (Bartels and Karplus, 1997,
1998; Hooft et al., 1992; Laio and Parrinello, 2002a; Mezei, 1987), by choosing
a bias potential of the following form:

Ubias(q) =−F(q)

Adding this bias term to the potential yields an exactly flat energy surface, and
hence the resulting probability distribution is uniform along q. Usually, the
simulations start with an initial guess for Ubias(q), because F(q) is not known a
priory. Then, iteratively, Ubias(q) is improved until a complete uniform distribu-
tion is obtained in q space.

6. Transition path sampling methods

In typical chemical reactions in solutions, the difficulty of computer simula-
tions is in understanding the rare events occurring in complex systems when
moving from one basin of attraction to another on a multimodal potential en-
ergy landscape. In particular, determining the transition state of these processes
as a function of order parameters, which have also to be defined, is notoriously
difficult problem (D. J. Wales, 2015), which will allow sampling using the stan-
dard MD simulations starting from this initial state (Anderson, 1973; Chandler,
1978; Hänggi et al., 1990; Keck, 1962). The disadvantage of this approach is
that the transition state is not always known a priory. Furthermore, because of
the high dimensionality of the problem phase space, the energy landscape has a
complex topology with many transition states, and hence the reaction coordinate
may not be represented accurately by the order parameter (Dellago et al., 1998).
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On the other hand, transition path sampling (Bolhuis et al., 2000; Dellago et al.,
1998), as an alternative method, does not require previous knowledge of tran-
sition states, but it relies on the calculation of isomorphic reversible work from
reactive flux correlation functions.

In this approach, L +1 copies of the trajectories in phase space characterize
a path in space-time:

XL = {x0→ x1→ ·· · → xL}

Here, xt (t = 0,1, · · · ,L) represent points in a 2D-dimensional phase space. A
relationship between the sequence time t and physical simulation run time exists
depending on the transition path (Dellago et al., 1998), which is represented by
2D(L + 1) coordinates.

If we assume visited states form a Markovian chain, then the probability of
simulating the trajectories is given by

P (XL)exp(−βE(x0))
L−1

∏
t=0

p(xt → xt+1) (83)

where β is the inverse simulation temperature and E(xt) is the total energy at
configuration xt . Here, the initial configuration (at t = 0) is generated from a
canonical distribution (Dellago et al., 1998):

ρinit(x0) = exp(−βE(x0))

In Eq. (83), p(xt → xt+1) gives the transition probability for each time step,
which is determined based on the natural dynamics. Usually, any Markovian
transition probability p(xt → xt+1) is such that it should obey to the Boltzmann
distribution and is normalized (Dellago et al., 1998). Typically, two approaches
are proposed as a choice for p(xt → xt+1): the Markovian action and Langevin
action (Dellago et al., 1998). If the natural dynamics are governed by the New-
ton’s equations of motion for the Hamiltonian systems, then

p(xt → xt+1) = δ(xt+1−Φ∆t(xt))

where δ is the delta function and Φ∆t(xt) is the discrete flow map of one-time
step propagation.
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A transition path sampling can be performed by applying the constraints
hA(x0) and hB(xL) at the endpoints in path probability as the following:

PAB(XL)≡ Z−1
AB (L)hA(x0)P (XL)hB(xL) (84)

ZAB(L) =
∫

dLx hA(x0)P (X;L)hB(xL)

where hA(x0) and hB(xL) are indicator functions defined as

hA,B(x) =

{
1 if x ∈ A,B
0 if x /∈ A,B

Here, hA(x0) constraints the trajectory path to start in the region A (i.e., reactant)
and hB(xL) constraints the trajectory path to stop in the region B (i.e., product).
Typically, L steps are used to take the system from states A to the state B, with
action defined by Eq. (84).

This approach has been used to probe the dynamics of folding pathways for
the C-terminal β-hairpin of protein G-B1 using MD simulation at room temper-
ature of protein in explicit solvent (Bolhuis, 2003).

It can be suggested for time propagation of the system to be governed by the
swarm particle-like dynamics given in the following form (i = 1, 2, · · · , f ):

ẋi =
pi

mi
(85)

ṗi = Fi−λi pi−P(s)
1 pi

+ γ1u1(xLbest
i − xi)+ γ2u2(xGbest

i − xi)

η̇
(i) =−

L

∑
j=1

Q(i)
1 (ξ

(i)
1, j)

2

kBT
ξ

(i)
2, j−

M

∑
k=2

ξ
(i)
k, j


ξ̇

(i)
1, j =−ξ

(i)
1, jξ

(i)
2, j−λ

(i)
b ξ

(i)
1, j−λiξ

(i)
1, j

j = 1, · · · ,L

ξ̇
(i)
k, j =

G(i)
k, j

Q(i)
k

−ξ
(i)
k+1, jξ

(i)
k, j

j = 1, · · · ,L; k = 2, · · · ,M−1
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ξ̇
(i)
M, j =

G(i)
M, j

Q(i)
M, j

j = 1, · · · ,L

ṡi,k = P(s)
i,k , k = 1, 2, · · · , M

Ṗ(s)
i,k =

Γi,k

Wi,k
−P(s)

i,k+1P(s)
i,k , k = 1, 2, · · · , M−1

Ṗ(s)
i,M =

Γi,M

Wi,M
,

where xGbest represents the coordinates of final state B (product), i.e., xL. Then,
we can generate different trajectories starting in the region A (reactant) and bi-
ased towards the end in final region B. As advantage this method does not
postulate a priory knowledge of the transition state.

7. Accelerated molecular dynamics method

Accelerated molecular dynamics approach is proposed as a robust method to
bias the potential energy function to efficiently enhance the barrier crossing
during the simulations (Hamelberg et al., 2004a), based on previously intro-
duced methods (Grubmüller, 1995; Rahman and Tully, 2002; Voter, 1997).
The method has been described in details elsewhere (Hamelberg et al., 2004a,
2007). In this approach, a reference boost potential energy U0 term is defined
with a value slightly lower in magnitude than the local potential energy min-
imum (Hamelberg et al., 2004a), then each step of simulations the potential
energy U(r) is modified by a continuous non-negative bias potential ∆U(r)
as (Hamelberg et al., 2004a, 2007)

Ubias(r) = U(r)+ ∆U(r) (86)

where the bias term is given as

∆U(r) =

 (U0−U(r))2

(U0−U(r))+ α
If U(r) <U0

0 Otherwise
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where α is used to adjust the depth of potential energy minimum and modu-
late local smoothness of the energy basins of Ubias. In this approach, the bias
term ∆U(r) raises the potential surfaces near the minimum states and leaves
unaffected surface points near the barriers.

Another form of the bias term ∆U(r) has also been proposed (de Oliveira
et al., 2008), such as

Ubias(r) = U(r)−∆U(r) (87)

where the bias term is given as

∆U(r) =

 (U(r)−U0)2

(U(r)−U0)+ α
If U(r)≥U0

0 Otherwise

In this new MD simulation approach, transitions are accelerated by lowering the
barriers instead. With increasing α the modified landscape becomes rougher,
and it moves closer to the original potential. It is interesting to note that taking
into account the relationship between average potential energy surface rough-
ness and the diffusivity, the method allows acquiring approximately the kinetics
of original potential energy landscape (Doshi and Hamelberg, 2011; Hamelberg
et al., 2005; Xin et al., 2010).

The method has successfully been used to study the sampling of slow dif-
fusive conformation transitions of torsion angles for biomolecules in timescales
longer than milliseconds (Hamelberg et al., 2007). The approach is also tested in
the ab initio molecular dynamics simulations (Bucher et al., 2011). The method
is efficiently used to increase accuracy and convergence of free energy com-
putations in condensed-phase systems when combined with thermodynamic in-
tegration simulations (de Oliveira et al., 2008). The approach is also used as
replica exchange by varying the degree of acceleration among the replicas for
gas-phase model systems (Fajer et al., 2008). The approach is used to study the
waters contribution to the energetic roughness from peptide dynamics (Johnson
et al., 2010). Besides, the method has also shown to retrieve the kinetic rate
constant when applied in simulations of the helix to beta strand transition of
alanine dipeptide in explicit solvent (de Oliveira et al., 2007). Recently (Pierce
et al., 2012), the approach has been used to access conformation changes in
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time scales of milliseconds for bovine pancreatic trypsin inhibitor protein em-
phasizing one of the method’s advantage for not needing prior knowledge of
free energy landscape or reaction coordinate.

8. Conformational flooding method

Helmut Grubmüller (Grubmüller, 1995) introduced a new approach examining
conformation transitions in complex macromolecular systems at the atomistic
level. In this method, first, the so-called conformation space (Ansari et al., 1987)
is defined for the system characterized by the Hamiltonian H as a restricted
region of the configuration phase space, in which system spends a long time.
Typically, this determines the time needed for the system to sample enough
phase space for the correct determination of the statistical averages (Grubmüller,
1995).

In this confined space, the free energy landscape is determined in order to
find an effective Hamiltonian Hk

eff, where k indicates one of the subspaces in
configuration space. Here, it is assumed that this configuration space is made
up by regions of low free energy F , which are separated from each other by
high energy barriers of order ∆F . The free energy landscape of the subspace
is expressed in terms of the so-called collective coordinates (A. Amadei et al.,
1993; Frauenfelder et al., 1989; Go and Scheraga, 1969; Grubmüller, 1994),
characterized by the vector

c = (c1,c2, · · · ,cm)T

where m is the number of essential degrees of freedom of the configuration sub-
space. This describes a coarse-graining of the configuration space, leaving out
3N−m degrees of freedom, with N being the total number of atoms. According
to (Grubmüller, 1995), in the subspace describe by the collective coordinates,
the conformation space density ρ̃(c) is defined as

ρ̃(c) =
∫

dx′ρ(x′)δ
(
c− c(x′)

)
(88)

where x is a 3N-dimensional Cartesian vector of the N particle positions, and
ρ(x) is the configuration space density. Hence, the free energy landscape can be
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evaluated as (Grubmüller, 1995):

F(c =−1
β

ln ρ̃(c)

Calculation of the ρ̃(c) requires knowledge of ρ(x), which is an integra-
tion on a 3N configuration space difficult to be evaluated in practice, since the
system has to be ergodic (Grubmüller, 1995). However, in time scales covered
by MD simulations (typically of order a few hundred nanoseconds), systems
(e.g. biomolecular systems) are non-ergodic at all time scales (see for exam-
ple (Clarage et al., 1995) or (Grubmüller, 1995) and the references therein).

In (Grubmüller, 1995), the configuration density of the subspace k, ρk(x) is
approximated as

ρk(x) = Z−1 exp
(
−1

2
(x− x̄)T C−1 (x− x̄)

)
(89)

In Eq. (89), the partition function, Z, is given by

Z =
∫

dxexp
(
−1

2
(x− x̄)T C−1 (x− x̄)

)
Here C is the covariance matrix, which is a ℜ3N×3N symmetric and positive
matrix, defined as (Grubmüller, 1995) (and the references therein):

C = 〈(x− x̄)(x− x̄)T 〉k

where

x̄ = 〈x〉k

Here, 〈· · · 〉k denotes ensemble average in the configuration subspace k. The
matrix C is calculated based on MD trajectories, which then is diagonalized:

C = ET Λ−1E (90)

where E and Λ are the matrix of eigenvectors and the diagonal matrix of eigen-
values, respectively. Projection of the Cartesian coordinates fluctuations along
the space spanned by eigenvectors E is

q = ET (x− x̄)
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Equation 89 can be simplified as

ρk(x) = Z−1 exp
(
−1

2
qT Λq

)
(91)

Coarse-graining of the configuration subspace k allows the definition of m
essential collective coordinates (A. Amadei et al., 1993)

c = (q1,q2, · · · ,qm)T

with the largest eigenvalues, which characterize the low-frequency fluctuation
modes, and the remaining 3N −m eigenvalues, which characterize the high-
frequency fluctuation modes, are assumed not to influence the conformation
transitions (Grubmüller, 1995). The justification of this choice is based on
the fact that the first m eigenmodes are anharmonic and with high amplitude,
whereas the other 3N−m eigenmodes are essentially harmonic and with small
amplitudes, and hence only m coordinates will dominate the collective motions
in biomolecular systems (see for example discussion in Ref. (Grubmüller, 1995)
and the references therein.)

Thus, the conformation subspace density is defined as

ρ̃k(c) = Z̃−1
c exp

(
−1

2
cT Λcc

)
where Λc is a reduced matrix of m diagonal elements and Z̃c is the corresponding
subspace partition function. Then, the effective Hamiltonian becomes,

Hk
eff(c) =

1
2β

cT Λcc (92)

This coarse-grained model for the configuration subspace Hk
eff is fundamen-

tal in designing the so-called flooding potential Vfl(c) chosen as a multivariate
Gaussian in order to fulfill the criteria discussed in Ref. (Grubmüller, 1995):

Vfl(c) = Efl exp
(
−1

2
cT Λflc

)
(93)

where Efl characterizes the strength of Vfl(c) and Λfl determines the shape of
Vfl(c) in conformation space, which is chosen to be

Λfl = Λc/γ
2
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where γ is a proportionality constant specified as a function of Vfl (Grubmüller,
1995):

γ = (βEfl)1/2

The method is applied to probe conformation transitions in argon clusters
and simplified protein model (Grubmüller, 1995). Other examples used to
demonstrate the application of flooding to accelerate conformation transitions
and chemical reactions are also examined (Lange et al., 2006).

9. Discussion and perspectives

Both industry and academic research are often using the molecular dynamics
technique and its variants to a wide range of problems and systems, from inor-
ganic and organic fluids to macromolecular. Yet, there are several issues identi-
fied in applying molecular dynamics simulations to these systems as we probed
in this work, such as time and size scale, and rare events.

The recent advances in parallel supercomputing have made possible to brace
larger spatial scales, but increasing simulation timescales remains still a chal-
lenge. For instance, simulations spanning up to microseconds in the lifetime of a
macromolecule need to cover billions of numerical integration time steps, which
is a challenge from the computation point of view. This is because in simulations
of biomolecules, at each time step, only a relatively small amount of computa-
tion can be run on parallel among a large number of processors. Hence, indeed,
billions of simulation time steps can only be executed in a considerable amount
of time. In nowadays, for molecular dynamics method development scientists,
in particular, a significant challenge is to effectively employ the computers of
near future to perform simulations of systems with millions of atoms (Hardy
et al., 2011; Phillips et al., 2014; Stone et al., 2011, 2013, 2014).

Another approach is exploitation of hardware parallel supercomputers for
MD simulations with processors that can execute traditional MD codes orders
of magnitude faster, such as Anton supercomputer (Scarpazza et al., 2013).

In long MD simulation runs up to milliseconds timescale using fully atom-
istic physical models, force field accuracy will determine the overall accuracy
achieved. Very recent studies (Piana et al., 2014) (and the references therein)
have shown that prediction of native-structures and folding rated can be more



i
i

“Chapter.ID_55380_6x9_Proofs_2” — 2019/1/11 — 8:17 — page 57 — #57 i
i

i
i

i
i

Advanced Methods Used in Molecular Dynamics ... 57

robust concerning error compare to the potential energy function. Moreover, the
numerical integrator used in MD simulations should guarantee energy conser-
vation and stable trajectories in long time scale simulations (Gray et al., 1994;
Kamberaj, 2005). Large computer storage is also needed to save, analyze, and
better computer graphics to handle a large amount of data produced.

Coarse-grained models of macromolecular systems have probed problems
of biologically relevant size and timescale during simulations when combined
with computer power (Tozzini and McCammon, 2005). However, the coarse-
grained models of proteins remain demanding, because of the challenges in
building useful energy potential functions representing all the physics of in-
teractions (Kamberaj, 2011; Lange and Grubmüller, 2006; Stepanova, 2007).
The most tested coarse-grained model is the bead-spring model of polymers.
Solvent effects are added using Brownian dynamics (Ermak and McCammon,
1978) or Stokesian dynamics (Phung et al., 1996).

In this study, we attempted to give a big picture of the methods used to
enhance sampling in molecular dynamics simulations and thus being able to
simulate rare events for complex molecular systems. Also, we presented the ad-
vantages and limitations of each method. Our final message from this study
is that probing relevant time and size scales of (bio)physical and chemical
phenomena in macromolecular systems may need new statistical models of
data processing and computational theoretical models to allow studying them
efficiently (G. Ciccotti and E. Vanden-Eijnden, 2015; M. K. Transtrum et al.,
2015).
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