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a b s t r a c t

Symbolic Information Flow Measurement software is used to compute the information flow between
different components of a dynamical system or different dynamical systems using symbolic transfer
entropy. The time series represents the time evolution trajectory of a dynamical system. We introduce a
method to perform a symbolic analysis of the time series based on the coarse-graining using a machine
learning approach and computation of the embedding parameters. Information flow is measured in
terms of the local and average symbolic transfer entropies. We also introduce a new measure of mutual
information based on the symbolic analysis.
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Current software version 1.0
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Current Code version V1.0
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Legal Code License GPL 3
Code Versioning system used Git
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Compilation requirements, Operating environments & dependencies MPI, gfortran
If available Link to developer documentation/manual https://github.com/kamberaj/sifmv1/tree/master/documentation
Support email for questions h.kamberaj@gmail.com

1. Introduction

Often, we need to determine the causal directions between
parts of the same system or coupled systems to understand
system dynamics and make an estimation of its actual physical
structure. The process includes observation of the system, record-
ing its behavior as a trajectory in phase space, or the so-called
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time series of signals and analyzing them. Pearson correlation
coefficient [1] does not imply causality, and also, it detects only
the linear correlations. Also, it is not sensitive to fluctuations in
perpendicular directions, but only to those that distribute along
with co-linear directions [2]. Granger causality [3] determines the
direction of interaction in terms of the contribution of a random
variable X in predicting another random variable Y , and many
variations of this concept are suggested.

Information theory measure of transfer entropy quantifies the
statistical coherence between two processes that evolve in time.
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Transfer entropy (TE) is introduced by Schreiber [4] as the de-
viation from the independence of the state transition of an in-
formation destination X from the previous state of an informa-
tion source Y . TE is an asymmetric measure of the information
flow between dynamical variables that represent either different
components of a dynamical system or different dynamical sys-
tems. TE can distinguish between the dynamical macro-variable
characterizing the actual dynamic behavior of the physical sys-
tem (source), and the other macro-variable that responds to the
changes (sink) [4].

Computing TE is a challenging problem due to its computa-
tional complexity. Different numerical recipes are suggested [5].
TE is already used for time series analysis in various fields:
clinical electroencephalography [4,6,7], financial data [8], and bio-
physics [2]. Many algorithms used to calculate TE are subject to
statistical errors, and reliable estimations of the transfer entropy
are data intensive [2].

This study presents a computer program, written in Fortran
90 programming language, used to perform symbolic information
flow measurements.

2. Algorithm design using symbolic analysis

2.1. Analyzing collective variables using machine learning

Dynamical variables, characterizing the components of a sys-
tem or different dynamical systems, represent the collective de-
grees of freedom of a system. They are often determined using the
principal components analysis (PCA) [9] as for biomolecules [10,
11]. We introduce a new algorithm, which is an improvement of
the auto-encoder machine learning (ML) approach [12] for deter-
mining the collective variables from higher dimensionality data.
ML predicts the properties of a system using decision-making al-
gorithms, based on some predefined features characterizing these
properties. Different ML methods are used to predict missing data
and discover new patterns during a data mining process [13]. Ar-
tificial neural network methods consider a large training dataset
to construct a system, which is made up of rules for recognizing
the patterns within the training data by an ML process [14].

Transpose vector Q ′ represents T time frames of dynamical
variables: Q ′

= (q (0) , q (1) , . . . , q(T − 1)), where q(t) repre-
sents a configuration of the system (or its components) of g
degrees of freedom at t: q (t) =

(
q1 (t) , q2 (t) , . . . , qg (t)

)
. That

forms a Markov chain of the states of a stationary stochastic
process visited by the system. To find a reduced g ′ dimensional
space (g ′ < g), which compresses the data, an encoding function
is determined [12]:

E: Rg
→ Rg ′

(1)

and a decoding function as:

D: Rg ′

→ Rg (2)

E provides a non-linear mapping using the Bootstrapping Swarm
Artificial Neural Network [14] of the Cartesian coordinates q (t)
as:

X (t) = E(q (t)) (3)

X (t) is an g ′ dimensional vector in the essential subspace of slow
collective variables. Similarly, using the non-linear mapping D, we
obtain an approximate time-lagged signal, q̃ (t + τ):

q̃ (t + τ) = D (X (t)) (4)

τ is the time-lag of the input signal q (t), and the approach
is called time-lagged auto-encoder. For τ = 0, the approach
represents the standard auto-encoder method. Both the input and
output signal of the encoder–decoder non-linear neural network

is the trajectory q (t) in the Cartesian space and the output
signal of the encoder, which is the input signal for the decoder,
represent the slow collective variables X (t). The input signals are
reconstructed using the Cartesian space vectors [12]:

x (t) = q (t) −
1

T − τ

T−1−τ∑
k=0

q(k)

y (t) = q (t + τ) −
1

T − τ

T−1−τ∑
k=0

q(k + τ ) (5)

Covariance matrices are constructed as:

C1 =
1

T − τ

T−1−τ∑
t=0

x (t) x′(t)

C2 =
1

T − τ

T−1−τ∑
t=0

y (t) y ′(t) (6)

Both signals x (t) and y(t) are whitened as:

x̂ (t) = C
−

1
2

1 x(t)

ŷ (t) = C
−

1
2

2 y(t) (7)

These two signals are the input and output, respectively, of the
encoder–decoder algorithm, which defines the non-linear func-
tions E and D, such that the reconstructed error is minimum:

Ŝ = min
E, D

T−1−τ∑
t=0

∥̂y (t) − D (E (̂x (t)))∥2 (8)

Input signals q(t) could characterize the dynamics of the entire
dynamical systems, such as in measuring the information flow
in signal pathways. Besides, q(t) could characterize the dynamics
of a component of the dynamical system, such as in measuring
the information flow between different parts of the same system.
It may represent the atomic coordinates of each amino acid in a
protein structure in determining the information flow between
different amino acids of a protein. We call this process structure
coarse-graining.

2.2. Symbolic analysis

The symbolic analysis approach is implemented based on
a time coarse-graining of the time series into symbols [2,15–
18]. We use the symbolization technique proposed in Ref. [2],
found to be computationally very robust. This approach cre-
ates a symbolic sequence for each time series (X0, X1, . . . , XN−1),
namely (X̂0, X̂1, . . . , X̂N−1). This process is also called time coarse-
graining [2] in which all information concerning the dynamics of
series is encoded using partitioning of phase space into symbols.
The time-series (X0, X1, . . . , XN−1) is converted into a symbolic
sequence using the rule [2]

X̂j = Ŝk, if X c
k < Xj < X c

k+1 (9)

where
(
X c
0 , X

c
1 , . . . , X

c
D

)
is a given set of D + 1 critical points, and

(Ŝ0, Ŝ1, . . . , ŜD−1) is a set of D symbols: 0, 1, 2, . . . ,D−1. D is such
that the Kraft inequality is satisfied [19]:

∑
k D

−mk ≤ 1, where
the sum runs over all state vectors, and mk is the length of each
state vector, which for a single time series is considered to be
equal for every state vector. Then, a new symbolic state vector,
representing a subset of numbers from 0 to D − 1, is generated
as

X̂µ

k =

(
Ŝ(k)
1 , Ŝ(k)

2 , . . . , Ŝ(k)
m

)T
(10)
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Fig. 1. A flowchart diagram of the SIFM software.

Concatenation of the symbols of a sequence of length m yields
the word Wk:

Wk = (X̂k−(m−1)τ . . . X̂k−τ X̂k) (11)

A particular sequence of symbols
(
X̂0, X̂1, . . . , X̂N−1

)
is uniquely

characterized by the words Wk for k = k0, . . . ,N − 1 [2]. The
probability of finding a particular value of Wk, is calculated from
the simulation data and used to compute the Shannon entropy as
a sum over all symbolic state vectors represented by the words
Wk:

H
(
X̂µ
)

= −

∑
k

p (Wk) log p(Wk) (12)

Function representing the map from time series (X0,X1, . . . ,

XN−1) to symbolic sequence
(
X̂0, X̂1, . . . , X̂N−1

)
is injective, and

hence H
(
X̂µ
)
and H (Xµ) coincides [20]. We obtained the critical

points
{
Xc
d

}D
d=0 for a particular series by maximizing the entropy

for all possible partitions [2]. We optimize critical points by max-
imizing the Shannon entropy using a Monte Carlo approach [2].
The joint Shannon information entropy of two discrete symbolic
processes {X̂0, X̂1, . . . , X̂N−1} and {Ŷ0, Ŷ1, . . . , ŶN−1} is as

H
(
X̂µx , Ŷµy

)
= −

∑
k

p
(
W k
)
log p(W k) (13)

W k is the concatenation of two words, W (x)
k and W (y)

k , represent-
ing the processes X and Y , respectively [2]. With this coarse-
graining of the time series, the symbolic transfer entropy is as [2]:

T̂Ŷ→X̂ =

(
H
(
X̂µx+1

)
− H(X̂µx )

)
−

(
H
(
X̂µx+1, Ŷµy

)
− H

(
X̂µx , Ŷµy

))
(14)

Similarly, the symbolic local transfer entropy is given by:

t̂Ŷ→X̂ (k) =

(
log p

(
X̂µx+1
k , Ŷµy

k

)
− log p

(
X̂µx
k , Ŷµy

k

))
−

(
log p

(
X̂µx+1
k

)
− log p(X̂µx

k )
)

(15)

The symbolic local transfer entropy is such that

T̂Ŷ→X̂ =

∑
k

p
(
X̂k+δ, X̂

µx
k , Ŷµy

k

)
t̂Ŷ→X̂ (k) (16)

Sum runs over all states, and δ represents a time shift in the his-
tory dependence. Also, symbolic mutual information Î(X; Y ) given
as:

Î(X; Y ) = H
(
X̂µx

)
+ H

(
Ŷµy

)
− H(X̂µx , Ŷµy ) (17)

2.3. Algorithm for optimization of embedded parameters

Proper values of embedding parameters m and τ define a
smooth discrete-time process able to reconstruct the underlying
dynamics [2,21–23], and hence for an appropriate characteriza-
tion of the structure of the time series [18,24–28] of the original
dynamics. To estimate the embedding parameters m and τ , we
implemented the algorithm presented in Ref. [2]. Here, τ is deter-
mined as the first minimum of the mutual information function
versus the time lag [2]:

I (X; X+τ ) = H (X) + H (X+τ ) − H(X, X+τ ) (18)

Space dimension m is determined from a separate procedure
using the false nearest neighbors. For that, given a state vector,
Xµ

k = (xk−(m−1)τ , xk−(m−1)τ+τ , . . . , xk−τ , xk), the nearest neighbor
is

Xµ,NN
k =

(
xNNk−(m−1)τ , x

NN
k−(m−1)τ+τ , . . . , x

NN
k−τ x

NN
k

)
(19)

Euclidean distance, between these two points in m-dimensional
space, is given by

Rm
i =

(
m−1∑
k=0

(
xi+kτ − xNNi+kτ

)2)1/2

(20)

Distance between these two points in (m + 1)-dimensional space
is,

Rm+1
i =

((
Rm
i

)2
+
(
xi+mτ − xNNi+mτ

)2)1/2
(21)
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Fig. 2. UML diagram of the module EMBD_CLASS and SYMB_CLASS.

This distance is normalized against the length in m-dimensional
space:

γm
i =

((
Rm+1
i

)2
−
(
Rm
i

)2(
Rm
i

)2
)1/2

=
|xi+mτ − xNNi+mτ |

Rm
i

(22)

γm
i is compared to a threshold value Rtol, which is determined a

priori and recommended to be 15 [28]. We tested the algorithm
for different values of Rtol in the range from 5 to 25 [2]. If γm

i
exceeds Rtol, then XNN

i is the false nearest neighbor of Xi in the
m-dimensional space and fFNN , the frequency of the false nearest
neighbors, is increased by one. m increases until fFNN approaches
zero [2].

3. Software framework

3.1. Software architecture

A flowchart diagram of the software, shown in Fig. 1, shows
the five modules, namely, EMBD_CLASS, SYMB_CLASS, TE_CLASS,
LTE_CLASS, and MI_CLASS.

Embedded Parameters Module (EMBD_CLASS) contains the
methods for computation of the embedded parameters. Fig. 2

shows a UML diagram. It inherits the functions from three auxil-
iary modules: SIFM_CLASS, TEUTILS_CLASS, and TERANDOM
_CLASS.

Symbolize Trajectory Module (SYMB_CLASS) contains the meth-
ods used for creating the symbolic trajectories. Fig. 2 presents
a UML diagram showing the auxiliary modules inherited by the
SYMB_CLASS.

Symbolic Transfer Entropy Module (TE_CLASS) contains the
procedures for calculations of the symbolic transfer entropy
(Fig. 4). Fig. 3 presents the UML diagram of TE_CLASS, where
NAME_CLASS is TE_CLASS. Besides, we show the auxiliary mod-
ules.

Symbolic Local Transfer Entropy Module (LTE_CLASS) contains
the procedures for calculations of the symbolic local transfer
entropy (see Fig. 4). In Fig. 3, we show the UML diagram of the
LTE_CLASS module (with NAME_CLASS as LTE_CLASS), and other
modules called by LTE_CLASS.

Symbolic Mutual Information Module (MI_CLASS) contains the
procedures for calculations of the symbolic mutual information
(Fig. 4); Fig. 3 shows a UML diagram of MI_CLASS in which



D. Nebiu and H. Kamberaj / SoftwareX 11 (2020) 100470 5

Fig. 3. UML diagram of an arbitrary module NAME_CLASS, which can be TE_CLASS, LTE_CLASS, or MI_CLASS.

NAME_CLASS represents MI_CLASS. We also indicate the auxiliary
modules called by MI_CLASS.

Auxiliary Class Modules: There are four auxiliary modules: SIFM_
KINDS, TEUTILS_CLASS, TERANDOM_CLASS, and TE_LINKLIST_
CLASS (see Fig. 3).

3.2. Software functionalities and implementation

Portability SIFM is written in Fortran 90 object-oriented style,
making it very portable in all operating systems.

Computational Precision: The precision of the computation can
be adjusted by the user using KIND variables, described in
SIFM_KINDS, for example, by adjusting the variables sifm_real,
sifm_i1, sifm_i2, sifm_i4, or sifm_i8. Besides, SIFM uses fast intrinsic
routines of FORTRAN for manipulating the operations with strings
or converting integer symbols into string symbols.

Memory Management: Software is written in a modular fashion,
making it faster to compile and better memory management. All
the dynamical arrays are declared as either allocatable arrays or
pointers, providing efficient management of the memory.

Data Management: Each module produces its data output, used
either for further analysis or by other modules as an input. That
is, in particular, important when the program is interrupted or
crashed due to errors, and then a new restart is set up from the
last point. SIFM supports different kinds of input data formats,

including binary files, reducing the size of those files. SIFM en-
dorses the majority of the trajectory file formats produced by
other software, making it applicable to many other fields.

Parallelization: SIFM is highly parallelized using Message Passing
Protocols. In this version, we parallelized the computation of
symbolic trajectories using the Monte Carlo and the calculation of
symbolic TE, LTE, and MI. That is in particularly useful when per-
forming symbolic analysis of more than one pair of time series, let
say of n pairs, (X1 (t) , Y1(t)) , (X2 (t) , Y2 (t)) , . . . , (Xn (t) , Yn (t)).
Since the computations of pairs are independent, we can dis-
tribute these computations among P processors. Every processor
is performing m calculations, m = P/n. P is such that P/n is
an integer to ensure the equal workload among the processors.
Fig. 5(A) shows the average CPU time (in seconds) for the com-
putation of embedded parameters for each degree of freedom
as a function of P and length of the time series. The averages
carry out over different dynamical systems. It shows that CPU
time decreases proportionally with the number of processors, and
as expected, it also increases with the length of the time series.
Typically, it takes 2.3 s to compute both m and τ for a time series
of size 20000 frames using 8 CPUs.

Fig. 5(B–C) presents the speedup of the parallel computations
for symbolic transfer entropy and symbolic mutual information
versus the number of processors. For the sake of comparisons,
the ideal expected speed up is also shown. We found that up
to four processors, the estimated speedup is the same as the
ideal one. Further increase in the number of processors resulted
in a deviation from this linearity due to overhead time on the
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Fig. 4. UML diagram of the modules TE_CLASS, LTE_CLASS, and MI_CLASS.

Fig. 5. (A) Average CPU time (in seconds) for the computation of embedded parameters (m, τ ) per time series versus the length of the time series and number of
processors. Speed up of (B) Symbolic Transfer Entropy and (C) Symbolic Mutual Information calculations versus the number of processors for the different lengths
of time series.
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Fig. 6. (A) Symbolic transfer entropies, Txy and Tyx versus the coupling strength A21 for fixed choices of other parameters. Directional Symbolic Transfer Entropy for
(B) protein–RNA complex system, and (C) C2–Fc complex system at the interface.

master node. Note that these computations are performed on the
i7 computer architecture.

4. Illustrative examples

Benchmark 1 is two coupled noisy time series as:{
x (t) = A11x (t − δ) + A12N(0, 1)
y (t) = A21x (t − δ) + A22N(0, 1)

(23)

In Eq. (23), A11, A12, A21, and A22 are constants, and N(0, 1) is
a random number following the normal distribution with mean
zero and variance one. A21 is the strength of coupling between
X and Y , and A22 the strength of the external noise on Y . δ is
one. Fig. 6(A) shows the symbolic transfer entropy versus the
coupling strength A21. Fig. 6(A) also indicates the values of other
parameters.

Benchmark 2 corresponds to the C2-Fc complex biomolecule,
where C2 is a fragment of protein G, and Fc is a domain of
human IgG protein. C2 fragment has 56 amino acids, and Fc has
206 amino acids. We performed molecular dynamics simulations
for 30 ns. The first ten ns are omitted from the analysis, and
only the last 20 ns are used for calculations. We printed out
the configurations every two ps, thus, in total, 10 000 snapshots
were used for analyzes. Fig. 6(C) shows the directional symbolic
transfer entropies, Di→j, as a color map between C2 and Fc. The
directional symbolic transfer entropy between time series X and
Y is calculated as: DX→Y = T̂X→Y −T̂Y→X . The scale of the values is
shown in color bars plotted next to the graph. Our results identify
the driving (source), characterized by a positive value of Di→j and

responding (sink) residues, characterized by a negative value of
Di→j. That is, if Di→j > 0, then residue i drives j, otherwise j drives
i.

The next test system is a complex biomolecular system, rep-
resenting Protein–RNA interactions. Protein is composed of 88
amino acids, and RNA is composed of 6 bases. We performed
15 ns of molecular dynamics simulation of the complex. The first
five ns is considered as equilibration, and only the last ten ns
is used for calculations. We printed out the configurations every
two ps, and thus, 5000 snapshots were saved. Fig. 6(B) presents
the directional symbolic transfer entropy between protein and
RNA. We can identify the residues driving the fluctuation motions
and those responding to these fluctuations. We identify different
clusters of residues acting as the source of the changes: the first
cluster includes the residues with the index from 1 to 2, and the
second cluster consists of the residues with the index from 7 to
12. There also exist three other small groups driving the motions
of the base 1 and 2, such as the cluster made up of the residues
between 36 and 40, between 65 and 69, and this including the
residues between 75 and 87.

5. Impact

Impact includes the use of SIFM as a toolkit for measurement
of information flow on the dynamical systems, for instance, be-
tween coupled dynamical systems (Benchmark 1) or between
various components of the same dynamical system (Benchmark
2). The SIFM uses the ML tool to encode the full dynamics of a
system to a lower-dimensional space, and an embedded parame-
ters technique to reconstruct the dynamics of the original system,
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making the toolkit robust from the computation viewpoint. Fur-
thermore, the use of a symbolic data analysis approach provides a
robust and accurate estimate of information flow measurements.

Also, we believe that SIFM can be used to associate trans-
fer entropy with energy transfer at the interfaces of complex
biomolecular systems, as in Refs. [14,29]. Thus, we can be able to
characterize the thermal conductance at the interfaces relevant
to biological processes enabling in-silico rational peptide/protein
engineering technologies for biomolecules interfaces.

6. Conclusions

We presented a new computer program for computation of
symbolic analysis of time series representing random processes of
dynamical systems. Besides, this program can compute symbolic
transfer entropy, mutual information, and local transfer entropy.

Some of the functionalities of this computer program added
during the implementation include portability, adjustable com-
putational precision, efficient memory management, useful and
practical data management system, and parallelization of com-
putations using MPI protocols.
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