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 A B S T R A C T

Ionic liquids are unique in their properties and potential to be green solvents. Still, the toxicity concern 
remains, compelling the need for excellent predictive models for safe design and application. This work reports 
the introduction of a general, robust meta-ensemble learning framework for predicting the toxicity of ionic 
liquids using molecular descriptors and fingerprints. The proposed model incorporates the Random Forest, 
Support Vector Regression, Categorical Boosting, Chemical Convolutional Neural Network as a base classifier 
and an Extreme Gradient Boosting meta-classifier. The framework uses Recursive Feature Elimination for 
feature selection and GridSearchCV for tuning the best hyperparameters. Without augmentation of the data, 
the RMSE equals 0.38, MAE equals 0.29, coefficient of determination (𝑅2) equals 0.87, and Pearson correlation 
equals 0.94. Data augmentation further improved model performance: RMSE = 0.06, MAE = 0.024, 𝑅2 = 0.99, 
and a Pearson correlation of 0.99. In addition, this indicates that the data-augmented model outperforms all 
existing models with prominence in its strength and prediction capacity. Thus, the present framework provides 
a superior tool for computer-aided molecular design of safer and more effective ionic liquids.
1. Introduction

Ionic liquids (ILs) are typically described as salts in a liquid state, 
consisting of ions, with melting points below 100 degrees Celsius [1,2]. 
In recent decades, the use and study of ILs have grown substantially, 
drawing considerable interest. Their versatility in structure and prop-
erties makes ILs highly suitable for a wide range of extraction [3], 
adsorption [4], electrochemistry [5], biocatalysis [6] applications. ILs 
demonstrate negligible vapor pressure at room temperature [7], are 
non-flammable, and maintain strong physical and chemical stability. 
As a result, they are seen as alternatives to traditional solvents, though 
this perception can be misleading, as they are often incorrectly assumed 
to be non-toxic and environmentally friendly solvents [8]. Despite 
being termed green solvents, the widespread use of ILs requires careful 
consideration of their toxicity when applying them on an industrial 
scale. According to the principles of green chemistry [9], chemical 
products should be designed and developed in a way that reduces or 
eliminates the production and use of harmful substances to both the 
environment and human health. Thus, green chemistry aims to use non-
toxic substances and prioritizes compounds derived from renewable 
resources [9,10]. The toxicity of ILs has become an unavoidable subject 
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of discussion. Research has shown that ILs exhibit varying levels of 
toxic effects on fish [11], plants [12], cells [13], and microorgan-
isms [14]. However, the vast number of ILs created by combining 
different anions and cations makes it impractical to experimentally test 
the toxicity of each one [15]. For comprehensive testing and active 
design of a wide range of IL properties and structures, computational 
models are preferred over experimental methods. These models are 
faster, safer, and more cost-effective [16–18]. Research in computa-
tional chemistry and modeling has immense potential for the future 
development of new and environmentally friendly ILs.

1.1. Critical descriptors

The descriptors, Electrostatic Potential Surface Area (𝑆𝐸𝑃 ) and 
Screening Charge Density Distribution Area (Sigma-Profile, 𝑆𝜎), played 
a critical role in predicting the toxicity of ionic liquids (ILs) [19]. 
The 𝑆𝐸𝑃  descriptor, which quantifies the surface area of molecules 
within specific electrostatic potential ranges, provided insights into 
the electron-level interactions crucial for understanding the impact of 
cations and anions on acetylcholinesterase enzyme activity.
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Meanwhile, the Sigma-Profile (𝑆𝜎) descriptor, derived from the 
COSMO-RS methodology, characterized the distribution of screening 
charge density across molecular surfaces, highlighting regions such as 
hydrogen-bond donors, hydrogen-bond acceptors, and non-polar zones. 
These descriptors collectively revealed that cations exhibited a more 
significant influence on toxicity than anions, underscoring their critical 
role in molecular interactions and toxicity mechanisms.

1.2. State of the art

The study of ionic liquids (ILs) has progressed significantly over the 
past few decades, with considerable advancements in their applications, 
particularly due to their unique properties. This section provides a 
comprehensive review of recent research, focusing on the computa-
tional modeling approaches used to predict the toxicity and physical 
properties of ILs. Cao et al. [20] employed Multiple Linear Regression 
(MLR), Support Vector Machine (SVM), and Extreme Learning Machine 
(ELM) as modeling approaches. ELM showed the best performance, 
with an 𝑅2 of 0.974 for the training set and 0.937 for the test set. 
The study found that cations had a greater impact on IL toxicity 
than anions, and the toxicity of ILs increases with the elongation of 
the alkyl side chain length. Longer alkyl chains can integrate into 
the polar headgroups of phospholipid bilayers, disrupting cell mem-
brane structure and increasing permeability. ILs with longer side chains 
exhibit surfactant-like behavior, interacting with membrane proteins 
and damaging cell membranes. This increase in lipophilicity enhances 
ILs’ ability to integrate into cell membranes, thereby contributing to 
their toxic effects. According to [19], MLR and ELM were employed 
to develop QSAR models, with ELM significantly outperforming MLR. 
ELM, a three-layer artificial neural network, leverages a streamlined 
training process by fixing randomly initialized weights and biases in 
the hidden layer and optimizing the output weights analytically. This 
efficient approach enabled ELM to effectively handle complex non-
linear relationships between molecular descriptors such as 𝑆𝐸𝑃  and 
𝑆𝜎 . The toxicity outcomes achieved an 𝑅2 of 0.969 for the training set 
and 0.950 for the test set. These results highlight ELM’s computational 
efficiency, high accuracy, and robust generalization performance. Yuan 
et al. [21] utilized the Tox21 dataset, which includes 12 properties 
divided into Nuclear Receptor and Stress Response panels, with over 
12,000 molecules to apply a Convolutional Neural Network (CNN) with 
four hidden layers for toxicity prediction. The CNN model, leveraging a 
binary cross-entropy loss function and techniques like SMOTE for data 
augmentation, achieved higher Area Under the Curve (AUC) values 
across most of these properties compared to traditional machine learn-
ing methods. The multi-channel grid-based CNN method outperformed 
other deep learning approaches, such as Chemception, Autoencoder, 
and DNN. Wang, Song, and Zhou [22] employed a Feedforward Neural 
Network (FNN) and Support Vector Machine (SVM) for modeling. The 
SVM model slightly outperformed the FNN model, achieving an 𝑅2

of 0.9202 for the test set. Both models demonstrated good predictive 
performance, with the SVM model showing better accuracy. Daili and 
Francesco [23] used a dataset of 127 ILs, with 𝜎-profile descriptors 
calculated using the GC-COSMO method [24]. The models included 
Multiple Linear Regression (MLR) and Multilayer Perceptron (MLP). 
The MLP-2 model, which was noted as the best-performing QSAR model 
in the study, demonstrated the highest predictive accuracy, achieving 
an 𝑅2 of 0.938 for the test set. The study highlighted the superior 
performance of MLP-2 in predicting IL toxicity toward IPC-81 leukemia 
rat cell lines. A study by Baskin, Epshtein, and Ein-Eli [25] bench-
marked machine learning methods for modeling the physical properties 
of ionic liquids. This study benchmarked various machine learning 
methods, including Partial Least Squares Regression (PLS), Random 
Forest Regression (RFR), Extreme Gradient Boosting (XGBoost), As-
sociative Neural Network (ASNN), Deep Neural Network (DNN), and 
others, on datasets containing 407 to 1204 ILs. Nonlinear ML methods 
significantly outperformed linear ones, with TransCNN and TransCNF 
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showing superior performance due to their advanced ability to analyze 
chemical structures encoded in SMILES strings. Fan et al. [26] applied 
Random Forest (RF) and XGBoost models. The XGBoost model, opti-
mized via Bayesian methods, outperformed RF with an 𝑅2 of 0.957 for 
the test set. SHAP analysis revealed that cationic side chain length and 
specific anions significantly influenced IL toxicity. Tabaaza et al. [27] 
applied various machine learning models, including Decision Tree, 
Random Forest, Extra Trees Regression, Gradient Boosting Regression, 
and XGBoost. The XGBoost model performed best, achieving an 𝑅2 of 
0.79 for the test set. Feature importance analysis indicated that cationic 
hydrophilicity and side chain length significantly impact toxicity. Smith 
et al. [28] develop MLR-Elastic Net (MLR-EN) and Artificial Neural Net-
work (ANN) models. The MLR-EN model consistently achieved higher 
𝑅2 values on unseen datasets, indicating more reliable and robust 
performance. A study by Mousavi et al. [29] compared white-box 
machine learning, deep learning, and ensemble learning approaches for 
modeling H2S solubility in ionic liquids. This study compared various 
models, including GMDH, GP, DBN, and XGBoost. The XGBoost model 
achieved the best performance with an AAPRE of 1.14%, demonstrating 
superior accuracy in predicting H2S solubility. Fan et al. [30] applied 
a Deep Convolutional Neural Network (DCNN) model, achieving an 𝑅2

of 0.965 for the test set. The 10-fold cross-validation confirmed con-
sistent performance, with the DCNN model outperforming traditional 
QSAR/QSPR models. Semenyuta et al. [31] developed QSTR models 
using Associative Neural Network (ASNN), Transformer Convolutional 
Neural Network (Trans-CNN), and Random Forest (RF) on datasets 
of 75 compounds for Daphnia magna toxicity and 99 compounds for 
Danio rerio toxicity. The models achieved high q2 values (a statistical 
parameter used to measure the predictive ability of models, specifically 
in the context of cross-validation), successfully predicting IL toxic-
ity with high accuracy. Abdullah et al. [32] applied various models, 
including Ridge Regression, LASSO, Decision Tree, Random Forest, 
Extra Trees, Gradient Boost, and Support Vector Regression. Random 
Forest showed the best performance, with MSDC identified as the most 
significant descriptor, contributing 67% to the prediction. Building on 
these findings, our study presents an improved model for predicting 
IL toxicity through a meta-ensemble learning framework combined 
with data augmentation. This method overcomes the limitations of 
prior models by combining predictions from various machine learning 
algorithms, thereby increasing both accuracy and robustness. The meta-
ensemble framework not only boosts predictive performance but also 
enhances interpretability by utilizing multiple molecular descriptors, 
making it a valuable tool for future assessments of IL toxicity.

1.3. Contributions

The main contributions of this research study are summarized as 
follows:

• To develop a robust meta-ensemble learning framework for 
predicting the toxicity of ionic liquids (ILs) using molecular de-
scriptors and fingerprints.

• To compute and integrate molecular fingerprints (using Morgan 
algorithm) and RDKit descriptors from SMILES strings, forming 
a comprehensive feature matrix.

• To apply Recursive Feature Elimination (RFE) with a Random-
ForestRegressor for effective dimensionality reduction, selecting 
the most informative features for toxicity prediction.

• To explore and optimize the performance of various base models, 
including Random Forest, Support Vector Regression (SVR), 
XGBoost, and CatBoost, through GridSearchCV and Random-
izedSearchCV.

• To construct and train a neural network model using Tensor-
Flow, incorporating Conv1D, MaxPooling1D, and Dense layers for 
capturing intricate patterns within the data.
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Fig. 1. Proposed meta-ensemble framework for predicting ionic liquid toxicity.
• To integrate predictions from multiple base models into a meta-
learner, enhancing overall prediction accuracy and robustness for 
IL toxicity.

• To present a comprehensive analysis of the meta-ensemble 
model’s effectiveness, highlighting its potential for aiding in the 
design of safer and more effective ionic liquids.

In this study, we propose an innovative meta-ensemble framework 
for predicting the toxicity of ionic liquids (ILs) by integrating molec-
ular descriptors [33] and fingerprints [1]. You can see the proposed 
approach in Fig.  1. Our approach is designed to handle both extensive 
and limited training samples effectively. We address the challenge of 
predicting IL toxicity by combining multiple machine-learning models 
to enhance prediction accuracy and robustness, a significant advance-
ment over traditional single-model approaches commonly found in 
the literature. Theoretical foundations for ensemble learning suggest 
that by minimizing generalization error through error mitigation and 
leveraging the diversity of different models, our ensemble approach 
capitalizes on the strengths of each component model. This leads to 
more accurate and stable predictions, as each model can capture unique 
aspects of the data. Moreover, ensemble methods enhance robustness 
3 
against overfitting by averaging predictions from multiple models, 
which helps reduce noise and prevents fitting to specific data patterns. 
Supported by theoretical frameworks like the Condorcet Jury Theorem, 
ensemble learning shows that a group of models can achieve higher 
accuracy collectively than any single model [34].

We utilized several performance metrics to assess our model, such 
as Mean Squared Error (MSE), Mean Absolute Error (MAE), R-squared 
(𝑅2), and Pearson correlation. In addition, we tracked the loss func-
tion during training to ensure convergence. The loss function offers a 
numerical evaluation of how closely the model’s predictions match the 
actual data. By monitoring the reduction in loss across iterations, we 
confirm that the model converges toward an optimal solution, thereby 
enhancing its predictive accuracy and stability.

Our findings demonstrate the superiority of the meta-ensemble 
model in capturing complex relationships within the data, offering a 
promising tool for the design of safer and more effective ionic liquids.

1.4. Organization

The rest of the paper is organized as follows: Section 2 describes the 
materials and methods used in this study, as well as the assessment cri-
teria adopted for the experiments. Section 3 discusses the observations 
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Table 1
Data for ionic liquids and their experimental logEC50.
 IL No. SMILES Experimental logEC50 
 1 [N+](C)(C)(CC)COCC.[Cl-] 3.59  
 2 O1c4c(O[B-]12Oc3c(O2)cccc3)cccc4.CC[N+](CC)(CC)CC 1.17  
 3 [N+](C)(C)(Cc1ccccc1)CCCCCCCCCC.[Cl-] 0.64  
and presents the results of the proposed approaches. Finally, Section 4 
provides a summary and conclusion.

2. Materials and methods

This study is comprehensively structured into five steps: Data Ac-
quisition, Feature Extraction, Feature Reduction, Model Development, 
and Model Application. Each step and the operations performed within 
them are explained in detail under their respective sub-headings.

2.1. Dataset description

In this study, the data for the toxicity prediction of ionic liquids was 
obtained from the article by [35]. Toxicity is expressed as logEC50, the 
base-10 logarithm of the half-maximal effective concentration (EC50) 
measured in micromolar (𝜇𝑀). Higher values of logEC50 indicate lower 
toxicity. The dataset includes information on the toxicity of various 
ionic liquids (ILs) measured by their logEC50 values. The dataset com-
prises 355 entries of different ionic liquids, each characterized by 
SMILES (Simplified Molecular Input Entry System) and corresponding 
Experimental logEC50 which experimentally represent the toxicity of 
the Ionic Liquid. Below is a sample of the data showing a few rows to 
illustrate the structure and type of information included: (see Table  1).

2.1.1. Distribution of cation families and anions in the dataset
That dataset includes a diverse range of cations and anions. Below, 

we provide a detailed breakdown of the dataset:
Cation families.

• 1-Butyl-3-methylimidazolium: Present in 9 instances
• 1-Ethyl-3-methylimidazolium: Present in 5 instances
• 3-Methyl-1-octylimidazolium: Present in 4 instances
• 3-Methyl-1-nonylimidazolium: Present in 3 instances

Other cations, including pyridinium, ammonium, and morpholinium-
based structures, appear less frequently, contributing to the dataset’s 
diversity.

Anions families. The most frequent anions in the dataset are:

• Amide: 52 instances
• Chloride: 43 instances (combining capitalization variations)
• Tetrafluoroborate: 38 instances (including alternative spellings)
• Bromide: 14 instances (combining capitalization variations)

Less common anions include sulfate, acetate, and phosphate, among 
others. These anions further expand the chemical diversity of the 
dataset.

We conducted several analyses to ensure the dataset’s quality and 
reliability. The Tanimoto similarity index was used to evaluate the 
structural diversity of the molecules, confirming that the dataset in-
cludes a broad range of compounds and is not biased toward particular 
chemical structures.

Additionally, a violin plot was utilized to examine the distribution 
of toxicity values, helping to identify any skewness or anomalies. These 
quality assessments verify the dataset’s suitability for developing robust 
predictive models. Detailed explanations of the Tanimoto similarity and 
Violin plot analyses are provided in the subsequent sections.

The data used in this study can be found in the Supplementary 
Information.
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2.1.2. Tanimoto similarity
The Tanimoto Similarity, often referred to as the Jaccard index, is 

a measure used to assess the similarity between two sets. In chem-
istry and molecular informatics, this metric is commonly applied to 
compare chemical structures. It plays a crucial role in activities like 
virtual screening, molecular fingerprinting, and compound clustering. 
This definition is detailed in the article by Willett et al. [36]. The 
overall similarity of the molecules was calculated and expressed as a 
percentage, resulting in approximately 19.21%. This indicates that, on 
average, the molecules in the dataset share about 19.21% similarity 
with each other based on the Tanimoto Similarity index. A similarity 
percentage of 19.21% (or 0.1921) falls within the ‘‘Low Similarity’’ 
range. This suggests that, on average, the molecules in the dataset do 
not share many common features and are relatively diverse.

This study aims to explore a diverse set of molecules, where a low 
Tanimoto similarity percentage is desirable, as it reflects a wide variety 
of chemical structures (Fig. 2). The observed overall similarity of 
19.21% indicates significant structural diversity, which is advantageous 
for investigating a broad spectrum of chemical properties. The detailed 
Tanimoto similarity matrix is provided in the Supporting Information 
as an Excel file.

2.1.3. Violin plot
A violin plot combines the features of a box plot – summarizing 

statistics such as the median, interquartile range, and outliers – with a 
kernel density plot, which represents the data’s probability density. To 
estimate this density, a kernel smoothing function, typically Gaussian, 
is applied, allowing for a more detailed and continuous visualization of 
the data distribution. The violin plot is an effective tool for visualizing 
the distribution [37] of toxicity values in the dataset, offering both 
summary statistics and insights into the data’s density and variability 
For a comprehensive guide, refer to Atlassian [38]. In this study, 
toxicity is quantified as logEC50, indicating the concentration at which 
an ionic liquid exhibits a 50% toxic effect. These values are expected 
to be continuously distributed, reflecting a spectrum of toxic effects 
across varying concentrations. The violin plot integrates the features 
of a box plot with a kernel density plot, enabling us to observe the 
median, interquartile range, potential outliers, and the overall shape 
of the data’s distribution. This visualization is particularly useful for 
detecting patterns such as skewness, bimodal distributions, or clusters 
that might not be apparent from summary statistics alone.

Fig.  3 presents the violin plot, depicting the distribution of logEC50
values (where logEC50 is the logarithmic concentration (in mol/L) at 
which a compound causes a 50% toxic effect) for the ionic liquids in 
our dataset. The figure illustrates the following key points:

• Consistent Distribution: The logEC50 distributions across the 
Training, Test, and Validation datasets exhibit consistency, con-
firming that the dataset splitting process preserved the original 
characteristics of the data.

• Balanced Representation: The visualization underscores a well-
balanced and representative distribution across all subsets, facili-
tating robust model training, validation, and testing.

• Enhanced Comparability: The integration of all data splits into 
a single plot provides a clear and comprehensive perspective, 
enabling the identification of potential biases and ensuring the 
interpretability of the dataset.
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Fig. 2. Clustered heatmap of the Tanimoto similarity matrix for the dataset. Each cell represents the Tanimoto coefficient between two molecules, ranging from 0 (no similarity) 
to 1 (identical structures). The hierarchical clustering highlights groups of structurally similar molecules, providing insight into the diversity of the dataset.
Fig. 3. Distribution of logEC50 values across the Training, Test, and Validation datasets.
Using logEC50 aligns directly with standard practices in computa-
tional toxicology, offering a clear and consistent metric for toxicity 
measurement. This approach eliminates ambiguity and ensures align-
ment with widely recognized methodologies in the field. Displaying 
the distributions for Training, Test, and Validation sets keeps the focus 
on the data critical to modeling, avoiding the need for subjective 
5 
classifications and fostering transparency. More details can be found 
in [39].

2.1.4. Data augmentation
Data augmentation is a technique that enriches the diversity and 

size of the training data without the collection of more data. For 
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molecular data, molecular structures are usually represented in the 
form of SMILES (Simplified Molecular Input Line Entry System) strings. 
The following augmentation techniques have been used:

1. Canonical SMILES Generation:

• The canonical SMILES is a unique representation of a 
molecule in a standardized format [40].

• This standardization ensures a consistent and unique rep-
resentation of molecules, preventing redundant entries and 
providing a reliable input for machine learning models.

2. Random SMILES Generation:

• Multiple random SMILES strings were generated for each 
molecule by randomizing the ordering of atoms and bonds 
while maintaining the molecular structure [41].

• This introduces variability in the representation, enabling 
the model to generalize better across different inputs.

3. Tautomer Enumeration:

• Tautomers are alternate forms of a molecule that differ in 
the placement of hydrogen atoms and double bonds [42].

• Using RDKit’s TautomerEnumerator, all possible tau-
tomers for each molecule were generated, ensuring chem-
ically relevant variations are included in the dataset.

The implementation workflow for preparing the augmented dataset 
is outlined below:

1. Read the Original Dataset:

• The dataset containing 355 ionic liquids with their SMILES 
strings and experimental logEC50 values was loaded.

2. Apply Augmentation for Each Molecule:

• Generate the canonical SMILES.
• Create multiple random SMILES (default: 5 variations per 
molecule).

• Enumerate all possible tautomers of the molecule.
• Combine all augmented SMILES into a unique set to avoid 
duplicates.

3. Retain the Original Toxicity Values:

• Each augmented SMILES representation was assigned the 
same experimental logEC50 value as the original molecule 
to maintain consistency in the toxicity data.

4. Compile the Augmented Dataset:

• The augmented dataset was saved as a new CSV file, ready 
for downstream machine learning tasks.

Tautomerization and its limited influence on ionic liquid toxicity. Tau-
tomerization, a process involving hydrogen atom migration accom-
panied by changes in bonding arrangements (e.g., keto-enol shifts), 
is well-documented to affect properties such as solubility, pKa, and 
binding affinities in drug-like molecules [43]. However, its impact 
on ionic liquids is negligible due to their distinct physicochemical 
characteristics [44].

The primary factors influencing ionic liquid toxicity are as follows:

• Cation-Anion Interactions: The pairing of cations and anions 
plays a critical role in determining ionic liquid properties, in-
cluding stability, hydrophobicity, and lipophilicity, which directly 
influence toxicity .
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• Structural Rigidity: Ionic liquids generally possess rigid frame-
works and well-defined charge distributions, reducing the rele-
vance of tautomerization in their property modulation.

Each augmented SMILES string is assigned the same experimental 
logEC50 value as the original molecule from which it was derived. 
This approach is predicated on the assumption that the structural 
modifications introduced during augmentation, such as canonicaliza-
tion, randomization, and tautomerization, do not fundamentally alter 
the core chemical properties that influence toxicity. The augmented 
data used in this study can be found in the Supplementary mate-
rial. To enhance model robustness and generalization, the dataset 
was augmented with Random SMILES strings and tautomers. Random
SMILES were generated to address potential biases from canonical 
SMILES encoding, ensuring the model focuses on core molecular prop-
erties rather than overfitting to specific patterns. We implemented a 
rigorous standardization process using canonical SMILES generated by 
RDKit’s ‘‘Chem.MolToSmiles’’ function with the ‘‘canonical=True’’ ar-
gument. This process ensures that each unique molecule is represented 
by a single, deterministic SMILES string, thereby removing redundancy 
caused by different atom and bond orderings. Similarly, tautomers, 
as alternative structural forms of molecules, were included to capture 
biologically relevant variability. Assuming similar toxicity across tau-
tomers due to their comparable physicochemical properties, consistent 
logEC50 values were assigned to all forms. The initial dataset comprised 
355 instances. After data augmentation, the dataset size expanded 
to 2119 instances, with a total of 1744 missing values identified, 
significantly increasing its diversity and enhancing the robustness of 
the predictive models.

2.2. Featurization stage

The featurization phase of our framework involves two types of 
featurizers. Each featurizer processes SMILES strings and generates 
fixed-length base features as output. These two steps, conversion of 
SMILES strings to molecular fingerprints and calculation of molecular 
descriptors, are where the transformation of chemical information en-
coded in SMILES (simplified molecular input line entry system) strings 
into numerical representation suitable for machine learning models is 
critical in our framework.

2.2.1. Logarithm of the half maximal effective concentration (logEC50)
logEC50 is the base-10 logarithm of the EC50 value, where EC50

represents the concentration of a substance needed to produce 50% 
of its maximal effect [45]. In the context of our study, it reflects the 
logarithmic transformation of the half-maximal effective concentration 
of ionic liquids (ILs) that inhibit acetylcholinesterase (AChE) enzyme 
activity. This transformation simplifies comparison across substances 
with varying potencies and is a standard metric in toxicological re-
search [46]. Toxicity is expressed as logEC50 in the literature where 
higher values of logEC50 indicate lower toxicity [35,47].

2.2.2. Conversion to molecular fingerprints
The initial step in the featurization process involves converting 

SMILES strings into molecular fingerprints. For this study, we employed 
the Morgan algorithm to generate Extended-Connectivity Fingerprints 
(ECFP) as fixed-length bit vectors, encoding topological molecular fea-
tures. Specifically, ECFP4 (with a diameter of 4) was generated using 
a radius parameter of 2. This choice effectively captures key molecular 
substructures, making it a widely accepted input for cheminformat-
ics and machine learning applications. The workflow translated input 
SMILES strings into RDKit [48] molecule objects, with the Morgan 
algorithm subsequently used to compute the fingerprints. For invalid 
SMILES strings, a zero-vector of the designated length was generated.
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Parameter selection for ECFP. The Extended-Connectivity Fingerprints 
(ECFP) were generated using a bit vector length of 2048 and a radius 
of 2, corresponding to the widely used ECFP4 fingerprint. These param-
eters were selected based on their ability to effectively encode the topo-
logical features of molecular structures while balancing computational 
efficiency and representational quality.

Radius (2): The two-bond radius captures local structural environ-
ments around each atom. This strikes a balance between detail and 
efficiency, avoiding the sparsity of smaller radii (e.g., ECFP2) and the 
redundancy of larger ones (e.g., ECFP6). ECFP4 has been demonstrated 
as effective in QSAR modeling due to its detailed representation of 
molecular substructures.

Length (2048): A 2048-bit vector minimizes hash collisions, en-
suring sufficient resolution to distinguish diverse molecular structures. 
This bit length is a standard in cheminformatics, balancing representa-
tion quality and computational cost.

2.2.3. Calculation of RDKit descriptors
In addition to molecular fingerprints, a full set of RDKit molecular 

descriptors is computed for each SMILES string. Descriptors are used to 
numerically represent various chemical characteristics of the molecule. 
This involves converting a SMILES string to an RDKit molecule ob-
ject, applying a set of pre-defined RDKit descriptor functions to that 
molecule, and then generating an array of values for those descriptors. 
The molecular descriptors were calculated using RDKit’s Descriptors.de-
scList, which provides a comprehensive set of physicochemical, topo-
logical, and electronic properties. These descriptors include molecular 
weight, LogP, TPSA, and molecular connectivity indices, calculated 
based on established methodologies [49–51]. Detailed definitions can 
be found in the RDKit documentation [48].

Number of RDKit descriptors. A total of 210 RDKit molecular descrip-
tors were generated for each compound. These descriptors provide 
a numerical representation of various molecular properties, including 
topological, geometrical, and physicochemical features.

Handling of Cations and Anions: Each ionic liquid in the dataset 
consists of a cation and an anion, represented together as a single 
SMILES string. The RDKit descriptor calculation function processes the 
entire SMILES string as a unified entity. This approach ensures that the 
descriptors capture the combined structural and chemical features of 
both the cation and the anion, effectively reflecting their interactions 
and their contributions to the ionic liquid’s overall properties. For cases 
where a SMILES string is invalid or cannot be processed, a zero vector 
of length 210 is assigned. This maintains consistency across the dataset 
and ensures compatibility with the machine learning pipeline.

If the SMILES string is invalid, a corresponding zero vector of the 
appropriate length is then generated. These molecular fingerprints and 
descriptors provide a combined, strong, and extensive representation of 
molecular data that improves the performance of the following machine 
learning tasks through the incorporation of both topological features 
and chemical properties, which make the models more predictive. 
Descriptor names are described in Supporting Information.

2.2.4. Combining molecular features for enhanced predictive modeling
The molecular fingerprints and descriptors are combined into a com-

plete feature matrix by stacking them in one large numpy array. Finally, 
these two arrays are concatenated to form one single feature matrix, X, 
while the target variable, representing experimental logEC50 values, is 
contained in y. This enables the models to have higher predictive power 
through integration with rich representations of chemical data.
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2.3. Feature selection using recursive feature elimination with random forest

In this study, the selection of features was a critical step to ensure 
that the predictive model was both effective and efficient. Given the 
high dimensionality of the dataset, with 2,258 potential features, it was 
essential to reduce this number to prevent overfitting, enhance model 
interpretability, and improve computational efficiency.

To identify the optimal number of features, we employed the Elbow 
Method in conjunction with Recursive Feature Elimination (RFE) [52] 
using a Random Forest Regressor [53]. The Elbow Method is a widely 
recognized technique for determining the point at which adding more 
features yields diminishing returns in terms of model performance. We 
evaluated the model’s performance across a range of feature subsets 
by systematically reducing the number of features and monitoring 
the cross-validation R2 score. The feature evaluation process involved 
testing subsets of features ranging from 50 to 2,258, with specific 
increments to capture the most informative features while balancing 
the computational cost. The R2 scores obtained from 5-fold cross-
validation were plotted against the number of features to visually 
identify the ‘‘elbow point’’—the point where the performance gain 
begins to plateau.

Our analysis revealed that the model’s performance peaked at 
around 650 features, achieving the highest 𝑅2 score within this range 
(see Fig.  4). This observation indicated that 650 features provided 
the best balance between model complexity and predictive accuracy. 
Features beyond this point did not contribute significantly to model 
performance and potentially introduced noise, thereby justifying the 
decision to retain only the top 650 features.

By selecting 650 features, we ensured that the model maintained 
high predictive power while minimizing the risk of overfitting and 
reducing computational overhead. This selection process was informed 
by both empirical evidence from the Elbow Method and the theoretical 
understanding that including too many features can degrade model 
performance. Thus, the chosen feature set represents the most efficient 
and effective subset of features for predicting the toxicity of ionic 
liquids in our study.

2.3.1. Addressing limitations of random forest feature importance
While the Random Forest algorithm provides useful feature im-

portance scores, it has known limitations when handling correlated 
features. Specifically, when two features are highly correlated, their 
importance can be split, leading to shared and potentially undervalued 
rankings. To mitigate this issue:

• Recursive Feature Elimination (RFE): The use of RFE ensures 
that features are iteratively evaluated and eliminated based on 
their contribution to model performance. This systematic process 
reduces redundancy and isolates the most informative features.

• Cross-Validation with 𝐑𝟐 Scores: To further validate feature 
importance, a range of feature subsets was evaluated using 5-fold 
cross-validation, ensuring that the selected features contribute 
meaningfully to toxicity prediction across different data splits.

• Elbow Method for Optimal Feature Selection: By employing 
the Elbow Method (Fig.  4), we identified the optimal subset of 
650 features, balancing model performance and complexity.

Our approach minimizes the limitations associated with correlated 
features in Random Forest while ensuring the robustness and inter-
pretability of the selected features. For further theoretical context 
on the limitations of feature importance methods, readers may refer 
to [54].
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Fig. 4. Elbow Method for determining the optimal number of features. The peak R2 score is observed around 650 features.
2.3.2. Feature selection process and reproducibility
Recursive Feature Elimination (RFE) with a Random Forest Regres-

sor was employed to determine the optimal number of features for 
predicting toxicity. The process involved evaluating subsets of features 
ranging from 50 to 2258, with features removed in increments of 50 ini-
tially and larger steps (200) at higher ranges. A 5-fold cross-validation 
was conducted using the 𝑅2 score as the performance metric.

The subset with 650 features was selected as optimal based on the 
following considerations:

• Highest Mean 𝐑𝟐 Score: The subset with 650 features pro-
duced the highest mean 𝑅2 value across cross-validation folds, 
demonstrating slightly better generalization compared to smaller 
subsets.

• Minimization of Redundancy: Larger subsets (e.g., 1000+ fea-
tures) introduced redundancy, which did not improve model 
performance but increased computational complexity.

• Retention of Key Features: Smaller subsets (e.g., 50 or 100 
features), while achieving competitive 𝑅2 scores, excluded impor-
tant molecular descriptors such as SMR_VSA5 and fr_unbrch_
alkane. The 650-feature subset ensured that key molecular 
properties were retained without introducing noise.

Narrow Range of R2 Values: Although the 𝑅2 values for subsets 
above 50 features fell within a narrow range, the selection of 650 
features was justified by its superior balance between performance and 
feature diversity. Fig.  4 shows the 𝑅2 scores across evaluated subsets, 
highlighting the plateau at 650 features.

Reproducibility Measures: To ensure reproducibility:

• A fixed random seed (random_state=42) was used during RFE 
and cross-validation.

This robust process ensured that the selected features captured 
meaningful molecular properties and contributed effectively to model 
generalization.

2.4. Base model stage

This stage outlines the methodology employed for training the 
predictive models, including the selection and training of base models. 
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The base learning phase comprises four distinct base models, each 
trained on features derived from the featurization stage.

• Random Forest (RF): It is a robust base learner that builds 
multiple trees on bootstrapped samples with random feature sub-
sets, enhancing predictive accuracy and reducing overfitting. It 
is suitable for large, high-dimensional datasets, capturing com-
plex patterns and interactions, and provides feature importance 
measures for model interpretation.

• Support Vector Regression (SVR): It is utilized as a base model 
due to its effectiveness in high-dimensional spaces and its ability 
to handle non-linear relationships through kernel functions. It 
aims to find a function with deviations within a specified margin 
while maximizing the margin of tolerance. Fine-tuning hyperpa-
rameters like the penalty parameter and kernel type enhances its 
performance, making SVR valuable for capturing complex data 
patterns [55].

• Categorical Boosting (CatBoost): CatBoost, derived from Cat-
egorical Boosting and developed by Yandex, is used as a base 
model for its superior handling of categorical data and protec-
tion against overfitting. It processes categorical features natively 
with minimal preprocessing, improving model performance. The 
ordered boosting technique prevents target leakage and overfit-
ting, especially in small datasets. Optimized for both CPU and 
GPU, CatBoost is efficient for large-scale datasets and excels in 
managing complex data patterns with automated hyperparameter 
tuning, making it a valuable component of the ensemble [56].

• Chemception: ChemCeption leverages convolutional neural net-
works (CNNs) to process and analyze chemical data, specifi-
cally using SMILES strings and molecular graphs. It automati-
cally extracts features from raw chemical data, eliminating the 
need for extensive manual feature engineering. This enhances 
the predictive power of models in cheminformatics by capturing 
complex relationships in molecular structures. With end-to-end 
learning, ChemCeption allows direct learning from chemical rep-
resentations, making it a powerful tool for tasks such as molecule 
property prediction, drug discovery, and material science [57].
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2.5. Meta-model learning

A meta-model learning approach was implemented to combine pre-
dictions from multiple base models, including Random Forest, Support 
Vector Regressor (SVR), CatBoost, and a convolutional neural network 
(Chemception). Model-ensemble learning enhances predictive capabil-
ities by combining outputs from multiple base models [58,59]. Key 
benefits include:

• Improved Predictive Accuracy: Ensembles combine the
strengths of individual models, often outperforming any single 
model by reducing the impact of individual weaknesses.

• Reduction in Overfitting: Averaging or voting across models 
stabilizes predictions and reduces variance, particularly in small 
or noisy datasets.

• Diversity in Predictions: By leveraging the strengths of both 
linear models (e.g., Ridge Regression for linear trends) and non-
linear models (e.g., Decision Trees for complex patterns), ensem-
bles deliver more robust results.

• Improved Generalization: Ensembles generalize better to un-
seen data, minimizing biases from individual models.

• Flexibility: Combining diverse models with different architec-
tures or training methods optimizes performance by utilizing a 
wide range of data characteristics.

The final meta-model was built using XGBoost, introduced by Chen 
and Guestrin [60], which aggregated the outputs of these base models 
to improve predictive accuracy. XGBoost’s efficacy has been widely 
acknowledged in molecular property and toxicity prediction tasks. 
Its ability to capture non-linear relationships, coupled with robust 
regularization and scalability, makes it an indispensable tool for chem-
informatics applications.

The dataset consisted of 355 samples and 650 features. The Chem-
ception model, a key component of the meta-model, comprised a 
Conv1D layer, MaxPooling1D layer, and two Dense layers, with a total 
of 1,034,085 trainable parameters. This architecture allowed the model 
to capture complex patterns necessary for accurate predictions. To 
prevent overfitting, 5-fold cross-validation was used during training, 
and hyperparameters were optimized using GridSearchCV for XG-
Boost and RandomizedSearchCV for Chemception. Regularization 
terms (L1 and L2) were applied in XGBoost to penalize complexity and 
promote generalization.

Overall, the meta-model effectively integrated the strengths of mul-
tiple models, resulting in a robust and accurate predictive framework 
that was well-tuned and generalizable.

2.6. Hyperparameter tuning

In this research, GridSearchCV was employed for hyperparameter 
tuning to optimize model performance. GridSearchCV, a cross-validated 
exhaustive search method from Sklearn, systematically explores the 
hyperparameter space to identify optimal parameters. This approach 
enhances predictive accuracy and robustness by using cross-validation 
to evaluate each combination, providing reliable performance estimates 
and avoiding overfitting. For a comprehensive understanding, please 
refer to the following paper [61].

2.7. Model evaluation

To evaluate the performance of the meta-model on the test set, 
several key statistical metrics were employed. These metrics included 
the Coefficient of Determination (𝑅2), Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), and Pearson Correlation Coefficient 
(𝑟). The following formulas were used to calculate these metrics:
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R-squared (𝑹𝟐)

See Eq.  (1)

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2
(1)

Mean absolute error (MAE)

See Eq.  (2)

MAE = 1
𝑛

𝑛
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Root mean square error (RMSE)

See Eq.  (3)
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Pearson correlation coefficient (𝒓)

See Eq.  (4)
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∑𝑛
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√

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥̄)2

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̄)2

(4)

In these formulas, 𝑦𝑖 refers to the observed toxicity values from 
the test set, while 𝑦̂𝑖 represents the predicted values generated by the 
meta-model. The term 𝑛 is the total number of data points used in the 
evaluation. To account for different magnitudes in 𝑦𝑖, the metrics are 
calculated using the raw observed values without scaling, as this study 
focuses on directly comparing predictions to actual values. The RMSE 
and MAE provide insight into the model’s error magnitude, with RMSE 
being more sensitive to larger errors due to the squaring of residuals. A 
small scale in these metrics indicates that the errors are generally low, 
whereas a large scale suggests more significant discrepancies between 
predicted and observed values.

Additionally, the standard deviation of the errors was calculated 
to assess the consistency of the model’s predictions. A low standard 
deviation indicates that the errors are tightly clustered around the mean 
error, suggesting reliable performance across different data points. The 
Pearson Correlation Coefficient, which measures the linear relationship 
between predicted and observed values, further supports the robustness 
of the model’s predictions. The scikit-learn package [62] in Python was 
utilized to implement these evaluation metrics, ensuring standardized 
and reliable calculations across all test scenarios.

3. Implementation details

Python libraries ‘RDkit’, ‘NumPy’ [63], and ‘scikit-learn’ were used 
in this study.

3.1. Process of converting SMILES strings to molecular fingerprints

• Molecular Fingerprint Conversion: The ‘‘smiles_to_fingerprint’’ 
function utilized RDKit to transform SMILES strings into molec-
ular fingerprints through the Morgan algorithm. It returned the 
fingerprint as a NumPy array or a zero bit vector if the molecule 
conversion fails. Consequently, 2048 molecular fingerprints were 
computed.

• Descriptor Calculation: The ‘‘calculate_descriptors’’ function
computed molecular descriptors from a SMILES string using ‘RD-
Kit’. It returned the descriptors as a ‘NumPy’ array or a zero array 
if the molecule conversion fails. Consequently, 210 molecular 
descriptors were computed.



S. Sadaghiyanfam et al. Artiϧcial Intelligence Chemistry 3 (2025) 100087 
Fig. 5. The top 20 features identified as the most important for predicting toxicity include descriptors such as SMR_VSA5 (van der Waals surface area weighted by refractivity),
MolMR (molecular refractivity), and fr_unbrch_alkane (unbranched alkane fragments). These descriptors provide insights into the physicochemical properties of ionic liquids, 
such as dispersion forces, molecular flexibility, and electronic activity, which are critical for understanding their interaction with acetylcholinesterase enzymes and resulting toxicity. 
For example, high values of SMR_VSA5 suggest strong dispersion interactions with biological targets, while features like EState_VSA8 and PEOE_VSA6 indicate electronic activity 
in specific molecular regions.
• Feature Matrix Construction: Fingerprints and descriptors were 
extracted from the dataset and converted to NumPy arrays. These 
arrays were concatenated along the horizontal axis to form a com-
bined feature matrix X. The target variable, representing experi-
mental logEC50 values, was extracted and stored in y. Ultimately, 
a total of 2258 features were collected.

• Imputation of Missing Values: In the literature, there are several 
proposed methods to impute missing values: mean imputation, 
median imputation, K nearest neighbor (KNN) imputation, predic-
tive mean matching, Bayesian Linear Regression (norm), Linear 
Regression, non-Bayesian (norm. nob), and random sample [64]. 
Among these recommended methods, Mean imputation is the sim-
plest and quickest imputation method. To handle missing values 
in the feature matrix X, the SimpleImputer class from scikit-learn 
was employed with the strategy set to ‘mean’. In the original 
dataset, the number of missing values was 292, whereas in the 
augmented dataset, the number of missing values increased to 
1744. The imputer was fitted to X, and the missing values were 
replaced with the mean value of their respective feature columns.

3.2. Feature selection with RFE

• Initial Feature Evaluation and Selection: To identify the most 
important features, RFE was applied using a RandomForestRe-
gressor with 100 estimators as the underlying model. The process 
began with a broad evaluation of feature subsets, where the 
optimal number of features was determined using cross-validation 
with R2 as the performance metric. This evaluation involved 
iteratively eliminating less important features and identifying 
the subset that provided the highest cross-validation score. The 
optimal number of features was found to be 650, based on the 
‘‘elbow method’’ from the plotted cross-validation scores. The RFE 
process was then refined to select this optimal number of features, 
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resulting in a new feature matrix (𝑋𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑) that included only the 
most relevant features.

• Feature Importance Ranking and Visualization: The impor-
tance of the selected features was subsequently evaluated and 
ranked according to the RandomForestRegressor model’s feature 
importance scores. The top features were visualized in a bar 
plot, highlighting the most significant contributors to the model’s 
predictive performance. Fig.  5 illustrates the top 20 significant 
features, as determined by the RandomForestRegressor model 
utilizing Recursive Feature Elimination (RFE).

3.3. Data split

The dataset was split randomly into training and testing sets, with 
80% of the data used for training and 20% for testing. To ensure 
reproducibility, the splitting process was controlled using a fixed ran-
dom_state value of 42. The same splitting strategy was applied to the 
augmented dataset.

3.4. Hyperparameter tuning of base models

This section details the creation, hyperparameter tuning, and selec-
tion of several base models used in the study: RandomForestRegressor, 
Support Vector Regressor (SVR), CatBoost Regressor, and Chemception 
(a specialized convolutional neural network designed for chemical data 
analysis) (see Tables  2 and 3).

GridSearchCV was used for the RandomForestRegressor, SVR, and 
CatBoost Regressor with 5-fold cross-validation (cv=5) and parallel 
computation (n_jobs=-1). RandomizedSearchCV was employed for 
the Chemception model with 3-fold cross-validation (cv=3). Grid-
SearchCV with 5-fold cross-validation was considered as an appropriate 
approach to RandomForestRegressor, SVR, and CatBoost Regressor in 
balancing the bias–variance in model selection during hyperparameter 
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Table 2
Hyperparameter grids and best parameters for RandomForestRegressor, SVR, and CatBoost Regressor.
 Model Type Parameters  
 

RandomForestRegressor

Hyperparameter Grid n_estimators: [100, 200] 
max_depth: [None, 10, 20] 
min_samples_split: [2, 5]

 

 Best Parameters n_estimators: 200 
max_depth: None 
min_samples_split: 2

 

 

Support Vector Regressor (SVR)

Hyperparameter Grid kernel: [‘rbf’] 
C: [0.1, 1, 10] 
gamma: [‘scale’, ‘auto’]

 

 Best Parameters kernel: ‘rbf’ 
C: 10 
gamma: ‘auto’

 

 

CatBoost Regressor

Hyperparameter Grid depth: [6, 8] 
learning_rate: [0.1, 0.01] 
iterations: [100, 200]

 

 Best Parameters depth: 8 
learning_rate: 0.1 
iterations: 200

 

Table 3
Hyperparameter grid and best parameters for the Chemception Model.
 Model Type Parameters  
 

Chemception Model

Layers Convolutional Layer with ReLU activation 
MaxPooling Layer 
Flatten Layer 
Dense Layer with ReLU activation 
Output Layer for regression

 

 Hyperparameter Grid filters: [32, 64] 
kernel_size: [3, 5] 
pool_size: [2, 3] 
dense_units: [50, 100] 
epochs: [10, 20] 
batch_size: [10, 20] 
learning_rate: [0.001, 0.01]

 

 Best Parameters filters: 64 
kernel_size: 3 
pool_size: 2 
dense_units: 100 
epochs: 20 
batch_size: 10 
learning_rate: 0.001

 

tuning, which was computationally efficient and conforms to most 
widely accepted standards in machine learning. In contrast, for the 
Chemception model, a 3-fold cross-validated RandomizedSearchCV was 
preferred because training deep neural networks is computationally 
expensive, yet this fold size guarantees a fair evaluation of model per-
formance for most problems when conducting hyperparameter tuning. 
This will allow model evaluation to be both reliable and efficient.

3.5. Creation of meta-features through cross-validated predictions

To improve the ensemble model’s predictive accuracy, cross-
validated predictions from each optimized base model were generated 
and utilized as meta-features. In the context of stacked ensemble 
learning, ‘meta features’ refer to the predictions generated by base 
models during the training and testing phases. These features serve 
as inputs to a higher-level model, known as the meta-model. For 
instance, in our study, predictions from models such as RandomForest, 
SVR, CatBoost, and Chemception were stored as meta features. These 
features encapsulate the diverse learning patterns captured by the 
base models and enable the meta-model to learn and refine the final 
prediction. An empty array, ‘‘meta_features’’, was created to store these 
predictions. Using 5-fold cross-validation, predictions were obtained 
for the RandomForestRegressor, Support Vector Regressor (SVR), and 
CatBoost Regressor. For the Chemception model, predictions were also 
11 
generated using 5-fold cross-validation, with careful reshaping to fit 
into the meta-feature array. This approach ensured that predictions for 
each training sample were made by models that had not encountered 
the sample during training, thus preventing overfitting and providing 
a dependable set of meta-features. These meta-features were then used 
as inputs for the meta-model in the stacking ensemble, leveraging the 
combined strengths of the base models to enhance overall predictive 
performance.

3.6. Hyperparameter tuning for the meta-model (XGBoost)

To optimize the meta-model in the stacking ensemble, an XGBoost 
regressor was fine-tuned using GridSearchCV. The hyperparameter grid 
and the best parameters identified are summarized in Table  4. The 
hyperparameter learning rate has a value, 0.2, which is higher than the 
typical values in such ranges. This value was obtained through vigorous 
hyperparameter tuning and found to be optimal. We experimented with 
a wide setting range going from as low as from 0.00001 up to 0.005. 
Nevertheless, from the cross-validation results, it was depicted that 
the learning rate equal to 0.2 offered the best performance level for 
this specific dataset. Similarly, other hyperparameters were also tuned 
over broad ranges to ensure optimal settings. Values, like the learning 
rate, were chosen empirically following systematic testing and not 
arbitrarily. These values best matched data characteristics – empirical 
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Table 4
Hyperparameter grid and best parameters for the XGBoost 
meta-model.
 Parameter Values Best value 
 n_estimators [100, 200] 100  
 max_depth [3, 6, 9] 6  
 learning_rate [0.01, 0.1, 0.2] 0.2  
 subsample [0.7, 0.8, 1.0] 0.8  
 colsample_bytree [0.7, 0.8, 1.0] 0.8  

trends – that focused attention toward dataset-specific tuning rather 
than standard published ranges.

The best XGBoost regressor configuration was:

Best XGBoost Regressor Configuration

 XGBRegressor(base_score=None, booster=None, 
callbacks=None,

 

 colsample_bylevel=None, colsample_bynode=None,  
 colsample_bytree=0.8, device=None, 
early_stopping_rounds=None,

 

 enable_categorical=False, eval_metric=None, 
feature_types=None,

 

 gamma=None, grow_policy=None, importance_type=None,  
 interaction_constraints=None, learning_rate=0.2, 
max_bin=None,

 

 max_cat_threshold=None, max_cat_to_onehot=None,  
 max_delta_step=None, max_depth=6, max_leaves=None,  
 min_child_weight=None, missing=nan, 
monotone_constraints=None,

 

 multi_strategy=None, n_estimators=100, n_jobs=None,  
 num_parallel_tree=None, random_state=42, ...)

This process ensured the meta-model effectively combined the 
strengths of the base models for enhanced predictive performance.

3.7. Creation of meta-features for the test set

To test the ensemble model on the test set, the meta_features were 
generated from all optimized base model predictions. An empty list, 
test_meta_features, was initialized to hold it. Results from the test set 
of ‘‘RandomForestRegressor’’, ‘‘SVR’’, and ‘‘CatBoost Regressor’’ were 
placed in the first three columns of test_meta_features. The ‘‘Chemcep-
tion’’ test set was also reshaped as required for its predictions, and 
their predictions were placed in the fourth column. This was done 
with the assurance that the meta-features were derived from well-
tuned models, thus providing reliable inputs for the meta-model in the 
stacking ensemble to increase predictive performance.

3.8. Final prediction with the meta-model

After generating meta-features from the optimized base models, the 
best XGBoost regressor was used to make the final predictions. The
test_meta_features array, containing the base models’ predic-
tions, served as input for the XGBoost meta-model. The optimized XG-
Boost regressor then produced the final test set predictions, leveraging 
the strengths of all base models to enhance accuracy.

4. Results and discussion

4.1. Comparative model performance analysis

This section offers a comparison of the ensemble model’s perfor-
mance with and without data augmentation, assessing the impact of 
data augmentation by examining the alignment between predicted and 
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Fig. 6. Actual vs Predicted Experimental logEC50 without data augmentation.

Fig. 7. Actual vs Predicted Experimental logEC50 with data augmentation.

Table 5
Performance metrics comparison for the ensemble model with and without data 
augmentation.
 Metric Without augmentation With augmentation 
 Root Mean Squared Error (RMSE) 0.383646 0.055850  
 Mean Absolute Error (MAE) 0.295523 0.020458  
 R-squared 0.878808 0.996990  
 Pearson Correlation 0.940181 0.998510  

actual values, along with the residuals’ distribution. As summarized in 
Table  5, the performance metrics clearly demonstrate the advantages 
of data augmentation. The ensemble model with data augmentation 
shows a significant reduction in Root Mean Squared Error (RMSE) and 
Mean Absolute Error (MAE), alongside substantial improvements in R-
squared and Pearson Correlation values, indicating a stronger fit and 
enhanced predictive accuracy.

4.1.1. Actual versus predicted values
The relationship between the actual and predicted experimental 

logEC50 values is illustrated in Figs.  6 and 7. Fig.  6 shows the outcomes 
for the model without data augmentation. The scatter plot demonstrates 
that the predicted values correspond fairly well with the actual values, 
though some deviations from the diagonal line are noticeable, partic-
ularly at higher logEC50 values. This suggests that while the model 
performs adequately, there is room for improvement in predicting the 
more extreme values.

On the other hand, Fig.  7 presents the results for the model with 
data augmentation. The scatter plot reveals a much tighter clustering of 
points around the diagonal line, indicating a significant improvement in 
prediction accuracy. The improved alignment suggests that the model 
with data augmentation more effectively captures the underlying pat-
terns in the data, resulting in more reliable predictions across the full 
range of experimental values.
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Fig. 8. Residuals Distribution without data augmentation.

Fig. 9. Residuals Distribution with data augmentation.

4.1.2. Residuals distribution
The residuals distribution for both models is illustrated in Figs.  8

and 9. Fig.  8, which corresponds to the model without data augmenta-
tion, displays a broader distribution of residuals centered around zero. 
Although the residuals follow a normal distribution, the wider spread 
indicates greater variability in the model’s errors, implying that the 
predictions are less consistent.

Conversely, Fig.  9 shows the residual distribution for the model 
with data augmentation. This distribution is much narrower and more 
sharply centered around zero, indicating a significant reduction in 
prediction errors. The decreased variability in residuals suggests that 
the augmented model not only enhances accuracy but also improves 
the consistency and reliability of the predictions.

4.2. Confidence interval analysis and statistical significance

To evaluate the precision and accuracy of the predictive models, 
both with and without data augmentation, an extensive statistical anal-
ysis was conducted. This involved calculating 95% confidence intervals 
for each predicted value and performing a paired t-test to compare the 
predictions against the actual experimental data.
Without Data Augmentation:

The model without data augmentation generated a mean prediction 
value of 2.9527, with a 95% confidence interval spanning from 2.6760 
to 3.2294. Specific confidence intervals, such as (2.944, 3.488) and 
(3.230, 3.774), were relatively narrow, suggesting a moderate level 
of certainty in these predictions. However, the standard deviation of 
the errors was 0.396, indicating greater variability in the predictions. 
The paired t-test resulted in a t-statistic of −1.053 and a 𝑝-value of 
0.296, which is higher than the standard significance level of 0.05. This 
indicates that there is no statistically significant difference between 
the predicted and actual values. While the model’s predictions are 
generally consistent with the experimental data, the confidence in these 
predictions is somewhat lower due to the higher variability.
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With Data Augmentation:
The model with data augmentation exhibited a marked improve-

ment in prediction accuracy. The mean prediction value slightly in-
creased to 3.0965, with a more precise 95% confidence interval rang-
ing from 2.9994 to 3.1936. The confidence intervals for specific pre-
dictions, such as (3.468, 3.662) and (3.213, 3.408), were narrower, 
indicating a higher degree of certainty. Additionally, the standard 
deviation of the errors significantly decreased to 0.086, demonstrating 
less variability and more consistent predictions. The paired t-test for 
the augmented model yielded a t-statistic of −3.799 and a 𝑝-value 
of 0.00017, which is well below the 0.05 significance threshold. This 
result highlights a statistically significant difference between the pre-
dicted and actual values, with the augmented model showing a much 
stronger alignment with the experimental data (see Fig.  10).

P-Value Analysis: The 𝑝-value analysis of both models highlights 
the statistical significance of their predictions. For the model without 
data augmentation, significant p-values (𝑝 < 0.05) are scattered, indicat-
ing occasional alignment with actual values. In contrast, the model with 
data augmentation exhibits a concentrated area of significant p-values, 
reflecting a more reliable prediction performance. This difference un-
derscores the impact of data augmentation in enhancing the model’s 
accuracy and consistency.

4.2.1. Methodological transparency
To evaluate the reliability and robustness of the model’s predic-

tions, we conducted confidence interval (CI) analysis and statistical 
significance testing. These methods provide quantitative measures of 
prediction uncertainty and ensure the validity of the results.

1. Confidence Interval Analysis: Confidence intervals were calcu-
lated to quantify the uncertainty and reliability of model predictions. 
The process involved the following steps:

• Mean and Standard Error Calculation: For each prediction, 
the mean (𝑦̄) and the standard error (SE) were computed. The 
standard error was derived using the formula: 
𝑆𝐸 = 𝜎

√

𝑛

 where 𝜎 is the standard deviation of the predictions, and 𝑛 is the 
sample size.

• Confidence Interval Estimation: A 95% confidence interval (CI) 
was calculated using the t-distribution to account for small sample 
sizes: 
𝐶𝐼 = 𝑦̄ ± 𝑡(1−𝛼∕2,𝑑𝑓 ) ⋅ 𝑆𝐸

 Here, 𝑡(1−𝛼∕2,𝑑𝑓 ) is the critical 𝑡-value for the desired confidence 
level, and 𝑑𝑓 represents the degrees of freedom.

• Interpretation: The CI provided a range within which the true 
prediction values are expected to fall with 95% confidence. This 
analysis helped assess the reliability of predictions across various 
EC50 ranges, particularly for extreme values.

2. Statistical Significance Testing: Statistical significance test-
ing was conducted to evaluate model performance and ensure the 
robustness of results:

• Paired t-Test: A paired t-test was performed between the pre-
dicted values and the experimental logEC50 values to assess pre-
dictive accuracy. This test evaluated whether the mean difference 
between predicted and actual values was statistically significant.

• Key Metrics: The t-statistic and 𝑝-value were reported, with a 
𝑝-value below 0.05 considered statistically significant. This in-
dicated that the model’s predictions were unlikely to be due to 
random chance.

3. Purpose and Benefit to the Community: These methods were 
employed to strengthen the robustness and reliability of model predic-
tions:
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Fig. 10. P-values across various data points for models without (left) and with (right) data augmentation. The shaded regions represent significant areas where p-values are below 
the 0.05 significance level (dashed line). The model with data augmentation shows a more consistent and statistically significant alignment of predictions with actual values, as 
evidenced by the higher density of p-values below the threshold.
 

Table 6
Comparison of model performance metrics.
 Model RMSE MAE R-squared Pearson 

correlation

 FNN (Training Set) [22] 0.2906 0.2111 0.9227 –  
 FNN (Test Set) [22] 0.3732 0.3028 0.8917 –  
 SVM (Training Set) [22] 0.2787 0.1762 0.9289 –  
 SVM (Test Set) [22] 0.3204 0.2628 0.9202 –  
 MLR [69] 0.51 – 0.77 –  
 MLR [70] 0.43 0.34 – –  
 Proposed Model (without DA) 0.383646 0.295523 0.878808 0.940181  
 Proposed Model (with DA) 0.060812 0.024410 0.996432 0.998301  

• Quantifying Model Uncertainty: CI analysis provides a way 
to report not just point predictions but also the associated un-
certainty. This is particularly valuable for datasets with high 
variability, as seen in studies involving ionic liquids.

• Ensuring Robustness: Statistical significance testing validates 
the reliability of reported results, serving as a benchmark for 
future ML studies.

• Fostering Transparency: By detailing these methods, we provide 
a framework for other researchers to adopt, promoting trans-
parency and reproducibility in ML-based research on ionic liquids.

The use of confidence interval analysis and statistical significance 
testing strengthens the robustness and reliability of model predic-
tions. These methods not only validate our results but also offer a 
reproducible approach that benefits the broader research community. 
For readers seeking more detailed information on confidence interval 
analysis and statistical significance testing, we recommend consulting 
established resources such as [65,66] for confidence intervals, and [67,
68] for statistical testing methods.

4.3. Model comparison

The proposed model, particularly with the incorporation of data 
augmentation, shows a remarkable enhancement in predicting the tox-
icity of ionic liquids compared to earlier models. Without data aug-
mentation, the model achieves an RMSE of 0.38, an MAE of 0.29, an 
R-squared value of 0.87, and a Pearson correlation of 0.94. However, 
when data augmentation is applied, the model’s performance signifi-
cantly improves, achieving an RMSE of 0.06, an MAE of 0.02, an R-
squared value of 0.99, and a Pearson correlation of 0.99. These results 
suggest that the data-augmented model not only surpasses the Feed-
forward Neural Network (FNN) and Support Vector Machine (SVM) 
models presented by Wang et al. (2020), but also significantly exceeds 
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the Multiple Linear Regression (MLR) models by Sosnowska et al. 
(2017) and Wu et al. (2020). The notable decrease in RMSE and MAE, 
coupled with the almost perfect R-squared and Pearson correlation 
values, underscores the robustness and predictive accuracy of the pro-
posed model, establishing it as a superior tool for the computer-aided 
molecular design of environmentally friendly ionic liquids (see Table 
6).

4.4. Discussion of top features

The top 20 features identified during the modeling process, as 
shown in Fig.  5, provide significant insights into the molecular char-
acteristics influencing toxicity. Among these, the most important de-
scriptors are:

SMR_VSA5: This feature represents the van der Waals surface area 
(VSA) contributions weighted by molar refractivity, capturing disper-
sion forces.

fr_unbrch_alkane: The count of unbranched alkane fragments, 
which reflects molecular flexibility.

VSA_EState7: An electrotopological state descriptor summarizing 
both electronic and geometric properties.

Dispersion Forces (SMR_VSA5): Molecular regions with high re-
fractivity are associated with strong dispersion interactions. These re-
gions can enhance molecular binding to biological targets, potentially 
increasing toxicity.

Fragment-Based Descriptors (fr_unbrch_alkane): Unbranched
alkanes, characterized by reduced steric hindrance, can influence
bioavailability and membrane permeability, impacting how the molecule
interacts with biological systems.

Electrotopological and Surface Area Descriptors (VSA_EState7):
These descriptors highlight regions of significant electronic activity 
and molecular reactivity. Such regions often correlate with interactions 
with enzymes, such as acetylcholinesterase, directly affecting toxicity.

4.5. Impact of data augmentation on high EC50 values

The observed improvement in model performance for compounds 
with high EC50 values following data augmentation can be attributed 
to the following factors:

1. Balancing the Dataset Distribution: High EC50 values, often 
associated with low-toxicity compounds, are typically under-
represented in toxicity datasets. This imbalance can result in 
a model biased toward more common lower EC50 values. Data 
augmentation methods, such as random SMILES generation and 
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tautomer enumeration, enriched the dataset by introducing di-
verse yet valid chemical representations. This increased repre-
sentation of high EC50 compounds enabled the model to better 
capture patterns associated with low-toxicity compounds.

2. Increased Chemical Diversity: Augmentation techniques ex-
panded the dataset with structurally and chemically diverse 
samples. This diversity:

• Highlighted subtle structural features relevant to high EC50
values that might be underexplored in the original dataset.

• Improved the model’s ability to generalize across sparsely 
populated regions of the chemical space, particularly those 
corresponding to high EC50 values.

3. Improved Representation of Low-Toxicity Patterns: High 
EC50 values are indicative of low-toxicity compounds, which 
may share distinct structural or physicochemical properties
(e.g., high molecular weight, low lipophilicity). Data augmen-
tation generated more examples of these specific patterns, en-
abling the model to:

• Differentiate low-toxicity compounds from high-toxicity 
ones more effectively.

• Capture features that were underrepresented in the origi-
nal dataset.

4. Mitigation of Overfitting: By introducing variability into the 
dataset, data augmentation inherently reduces overfitting. This 
forces the model to focus on generalizable features rather than 
memorizing specific instances. For high EC50 values, this vari-
ability enhanced the model’s ability to identify underlying trends 
and structural characteristics associated with low toxicity.

5. Amplifying Signal for Sparsely Represented Regions: In the 
original unaugmented dataset, high EC50 compounds
contributed less to the overall loss function during training 
due to their smaller representation. Augmentation amplified the 
signal from these sparsely represented regions, ensuring that 
the model learned effectively from them, thereby improving 
predictive performance.

These factors collectively contributed to the observed improvement 
in predictive performance for high EC50 values, reducing bias toward 
more common toxicity levels and improving the model’s ability to 
generalize across the entire EC50 spectrum.

5. Conclusion

This study presents a cutting-edge meta-ensemble learning frame-
work designed to predict the toxicity of ionic liquids (ILs) with re-
markable accuracy, utilizing molecular descriptors and fingerprints. By 
combining the strengths of multiple machine learning models – such as 
Random Forest, Support Vector Regression, CatBoost, and Chemception 
– with an XGBoost meta-classifier, the framework achieves notable 
improvements compared to traditional approaches. Efficiency and pre-
cision are further enhanced through Recursive Feature Elimination for 
feature selection and hyperparameter tuning via GridSearchCV.

Data augmentation techniques, including random SMILES gener-
ation, canonical SMILES, and tautomer enumeration, play a pivotal 
role in refining model performance. These methods reduce predic-
tion errors and enhance consistency. The framework demonstrates 
significant improvements in RMSE, MAE, 𝑅2, and Pearson correlation 
coefficients over models that do not employ augmentation, highlighting 
its robustness and reliability.

Beyond its technical contributions, this research offers a powerful 
tool for computer-aided molecular design of environmentally sustain-
able ILs, aligning with the principles of green chemistry. Moreover, it 
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provides a reproducible framework for advancing QSAR modeling by 
integrating data-driven insights with molecular property prediction.

Future developments could extend this framework by exploring 
new data augmentation methods, incorporating experimental valida-
tion, and applying it to broader molecular datasets. Additionally, a 
comparison of the performances of the base models can be investigated 
to see their strengths separately as well. Such efforts would further es-
tablish its versatility and value in cheminformatics and environmental 
sciences.
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