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ABSTRACT

Ionic liquids are unique in their properties and potential to be green solvents. Still, the toxicity concern
remains, compelling the need for excellent predictive models for safe design and application. This work reports
the introduction of a general, robust meta-ensemble learning framework for predicting the toxicity of ionic
liquids using molecular descriptors and fingerprints. The proposed model incorporates the Random Forest,
Support Vector Regression, Categorical Boosting, Chemical Convolutional Neural Network as a base classifier
and an Extreme Gradient Boosting meta-classifier. The framework uses Recursive Feature Elimination for
feature selection and GridSearchCV for tuning the best hyperparameters. Without augmentation of the data,
the RMSE equals 0.38, MAE equals 0.29, coefficient of determination (R?) equals 0.87, and Pearson correlation
equals 0.94. Data augmentation further improved model performance: RMSE = 0.06, MAE = 0.024, R?> = 0.99,
and a Pearson correlation of 0.99. In addition, this indicates that the data-augmented model outperforms all
existing models with prominence in its strength and prediction capacity. Thus, the present framework provides

a superior tool for computer-aided molecular design of safer and more effective ionic liquids.

1. Introduction

Ionic liquids (ILs) are typically described as salts in a liquid state,
consisting of ions, with melting points below 100 degrees Celsius [1,2].
In recent decades, the use and study of ILs have grown substantially,
drawing considerable interest. Their versatility in structure and prop-
erties makes ILs highly suitable for a wide range of extraction [3],
adsorption [4], electrochemistry [5], biocatalysis [6] applications. ILs
demonstrate negligible vapor pressure at room temperature [7], are
non-flammable, and maintain strong physical and chemical stability.
As a result, they are seen as alternatives to traditional solvents, though
this perception can be misleading, as they are often incorrectly assumed
to be non-toxic and environmentally friendly solvents [8]. Despite
being termed green solvents, the widespread use of ILs requires careful
consideration of their toxicity when applying them on an industrial
scale. According to the principles of green chemistry [9], chemical
products should be designed and developed in a way that reduces or
eliminates the production and use of harmful substances to both the
environment and human health. Thus, green chemistry aims to use non-
toxic substances and prioritizes compounds derived from renewable
resources [9,10]. The toxicity of ILs has become an unavoidable subject
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of discussion. Research has shown that ILs exhibit varying levels of
toxic effects on fish [11], plants [12], cells [13], and microorgan-
isms [14]. However, the vast number of ILs created by combining
different anions and cations makes it impractical to experimentally test
the toxicity of each one [15]. For comprehensive testing and active
design of a wide range of IL properties and structures, computational
models are preferred over experimental methods. These models are
faster, safer, and more cost-effective [16-18]. Research in computa-
tional chemistry and modeling has immense potential for the future
development of new and environmentally friendly ILs.

1.1. Critical descriptors

The descriptors, Electrostatic Potential Surface Area (Syp) and
Screening Charge Density Distribution Area (Sigma-Profile, .S,), played
a critical role in predicting the toxicity of ionic liquids (ILs) [19].
The Sgp descriptor, which quantifies the surface area of molecules
within specific electrostatic potential ranges, provided insights into
the electron-level interactions crucial for understanding the impact of
cations and anions on acetylcholinesterase enzyme activity.
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Meanwhile, the Sigma-Profile (S;) descriptor, derived from the
COSMO-RS methodology, characterized the distribution of screening
charge density across molecular surfaces, highlighting regions such as
hydrogen-bond donors, hydrogen-bond acceptors, and non-polar zones.
These descriptors collectively revealed that cations exhibited a more
significant influence on toxicity than anions, underscoring their critical
role in molecular interactions and toxicity mechanisms.

1.2. State of the art

The study of ionic liquids (ILs) has progressed significantly over the
past few decades, with considerable advancements in their applications,
particularly due to their unique properties. This section provides a
comprehensive review of recent research, focusing on the computa-
tional modeling approaches used to predict the toxicity and physical
properties of ILs. Cao et al. [20] employed Multiple Linear Regression
(MLR), Support Vector Machine (SVM), and Extreme Learning Machine
(ELM) as modeling approaches. ELM showed the best performance,
with an R? of 0.974 for the training set and 0.937 for the test set.
The study found that cations had a greater impact on IL toxicity
than anions, and the toxicity of ILs increases with the elongation of
the alkyl side chain length. Longer alkyl chains can integrate into
the polar headgroups of phospholipid bilayers, disrupting cell mem-
brane structure and increasing permeability. ILs with longer side chains
exhibit surfactant-like behavior, interacting with membrane proteins
and damaging cell membranes. This increase in lipophilicity enhances
ILs’ ability to integrate into cell membranes, thereby contributing to
their toxic effects. According to [19], MLR and ELM were employed
to develop QSAR models, with ELM significantly outperforming MLR.
ELM, a three-layer artificial neural network, leverages a streamlined
training process by fixing randomly initialized weights and biases in
the hidden layer and optimizing the output weights analytically. This
efficient approach enabled ELM to effectively handle complex non-
linear relationships between molecular descriptors such as Sgp and
S,. The toxicity outcomes achieved an R? of 0.969 for the training set
and 0.950 for the test set. These results highlight ELM’s computational
efficiency, high accuracy, and robust generalization performance. Yuan
et al. [21] utilized the Tox21 dataset, which includes 12 properties
divided into Nuclear Receptor and Stress Response panels, with over
12,000 molecules to apply a Convolutional Neural Network (CNN) with
four hidden layers for toxicity prediction. The CNN model, leveraging a
binary cross-entropy loss function and techniques like SMOTE for data
augmentation, achieved higher Area Under the Curve (AUC) values
across most of these properties compared to traditional machine learn-
ing methods. The multi-channel grid-based CNN method outperformed
other deep learning approaches, such as Chemception, Autoencoder,
and DNN. Wang, Song, and Zhou [22] employed a Feedforward Neural
Network (FNN) and Support Vector Machine (SVM) for modeling. The
SVM model slightly outperformed the FNN model, achieving an R?
of 0.9202 for the test set. Both models demonstrated good predictive
performance, with the SVM model showing better accuracy. Daili and
Francesco [23] used a dataset of 127 ILs, with o-profile descriptors
calculated using the GC-COSMO method [24]. The models included
Multiple Linear Regression (MLR) and Multilayer Perceptron (MLP).
The MLP-2 model, which was noted as the best-performing QSAR model
in the study, demonstrated the highest predictive accuracy, achieving
an R? of 0.938 for the test set. The study highlighted the superior
performance of MLP-2 in predicting IL toxicity toward IPC-81 leukemia
rat cell lines. A study by Baskin, Epshtein, and Ein-Eli [25] bench-
marked machine learning methods for modeling the physical properties
of ionic liquids. This study benchmarked various machine learning
methods, including Partial Least Squares Regression (PLS), Random
Forest Regression (RFR), Extreme Gradient Boosting (XGBoost), As-
sociative Neural Network (ASNN), Deep Neural Network (DNN), and
others, on datasets containing 407 to 1204 ILs. Nonlinear ML methods
significantly outperformed linear ones, with TransCNN and TransCNF
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showing superior performance due to their advanced ability to analyze
chemical structures encoded in SMILES strings. Fan et al. [26] applied
Random Forest (RF) and XGBoost models. The XGBoost model, opti-
mized via Bayesian methods, outperformed RF with an R? of 0.957 for
the test set. SHAP analysis revealed that cationic side chain length and
specific anions significantly influenced IL toxicity. Tabaaza et al. [27]
applied various machine learning models, including Decision Tree,
Random Forest, Extra Trees Regression, Gradient Boosting Regression,
and XGBoost. The XGBoost model performed best, achieving an R? of
0.79 for the test set. Feature importance analysis indicated that cationic
hydrophilicity and side chain length significantly impact toxicity. Smith
et al. [28] develop MLR-Elastic Net (MLR-EN) and Artificial Neural Net-
work (ANN) models. The MLR-EN model consistently achieved higher
R? values on unseen datasets, indicating more reliable and robust
performance. A study by Mousavi et al. [29] compared white-box
machine learning, deep learning, and ensemble learning approaches for
modeling H2S solubility in ionic liquids. This study compared various
models, including GMDH, GP, DBN, and XGBoost. The XGBoost model
achieved the best performance with an AAPRE of 1.14%, demonstrating
superior accuracy in predicting H2S solubility. Fan et al. [30] applied
a Deep Convolutional Neural Network (DCNN) model, achieving an R*
of 0.965 for the test set. The 10-fold cross-validation confirmed con-
sistent performance, with the DCNN model outperforming traditional
QSAR/QSPR models. Semenyuta et al. [31] developed QSTR models
using Associative Neural Network (ASNN), Transformer Convolutional
Neural Network (Trans-CNN), and Random Forest (RF) on datasets
of 75 compounds for Daphnia magna toxicity and 99 compounds for
Danio rerio toxicity. The models achieved high q° values (a statistical
parameter used to measure the predictive ability of models, specifically
in the context of cross-validation), successfully predicting IL toxic-
ity with high accuracy. Abdullah et al. [32] applied various models,
including Ridge Regression, LASSO, Decision Tree, Random Forest,
Extra Trees, Gradient Boost, and Support Vector Regression. Random
Forest showed the best performance, with MSDC identified as the most
significant descriptor, contributing 67% to the prediction. Building on
these findings, our study presents an improved model for predicting
IL toxicity through a meta-ensemble learning framework combined
with data augmentation. This method overcomes the limitations of
prior models by combining predictions from various machine learning
algorithms, thereby increasing both accuracy and robustness. The meta-
ensemble framework not only boosts predictive performance but also
enhances interpretability by utilizing multiple molecular descriptors,
making it a valuable tool for future assessments of IL toxicity.

1.3. Contributions

The main contributions of this research study are summarized as
follows:

To develop a robust meta-ensemble learning framework for
predicting the toxicity of ionic liquids (ILs) using molecular de-
scriptors and fingerprints.

To compute and integrate molecular fingerprints (using Morgan
algorithm) and RDKit descriptors from SMILES strings, forming
a comprehensive feature matrix.

To apply Recursive Feature Elimination (RFE) with a Random-
ForestRegressor for effective dimensionality reduction, selecting
the most informative features for toxicity prediction.

To explore and optimize the performance of various base models,
including Random Forest, Support Vector Regression (SVR),
XGBoost, and CatBoost, through GridSearchCV and Random-
izedSearchCV.

To construct and train a neural network model using Tensor-
Flow, incorporating Conv1D, MaxPooling1D, and Dense layers for
capturing intricate patterns within the data.
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« Convert SMILES strings to
molecular fingerprints.

« Calculate RDKit molecular
descriptors.

Apply Recursive Feature
Elimination (RFE) with a Random
Forest model

* Train Random Forest model.

» Train Support Vector
Regression (SVR) model.

» Train CatBoost model.

 Train Chemception model.

Use cross-validated predictions
from base models to train the
XGBoost meta-model.

Fig. 1. Proposed meta-ensemble framework for predicting ionic liquid toxicity.

+ To integrate predictions from multiple base models into a meta-
learner, enhancing overall prediction accuracy and robustness for
IL toxicity.

» To present a comprehensive analysis of the meta-ensemble
model’s effectiveness, highlighting its potential for aiding in the
design of safer and more effective ionic liquids.

In this study, we propose an innovative meta-ensemble framework
for predicting the toxicity of ionic liquids (ILs) by integrating molec-
ular descriptors [33] and fingerprints [1]. You can see the proposed
approach in Fig. 1. Our approach is designed to handle both extensive
and limited training samples effectively. We address the challenge of
predicting IL toxicity by combining multiple machine-learning models
to enhance prediction accuracy and robustness, a significant advance-
ment over traditional single-model approaches commonly found in
the literature. Theoretical foundations for ensemble learning suggest
that by minimizing generalization error through error mitigation and
leveraging the diversity of different models, our ensemble approach
capitalizes on the strengths of each component model. This leads to
more accurate and stable predictions, as each model can capture unique
aspects of the data. Moreover, ensemble methods enhance robustness

against overfitting by averaging predictions from multiple models,
which helps reduce noise and prevents fitting to specific data patterns.
Supported by theoretical frameworks like the Condorcet Jury Theorem,
ensemble learning shows that a group of models can achieve higher
accuracy collectively than any single model [34].

We utilized several performance metrics to assess our model, such
as Mean Squared Error (MSE), Mean Absolute Error (MAE), R-squared
(R?), and Pearson correlation. In addition, we tracked the loss func-
tion during training to ensure convergence. The loss function offers a
numerical evaluation of how closely the model’s predictions match the
actual data. By monitoring the reduction in loss across iterations, we
confirm that the model converges toward an optimal solution, thereby
enhancing its predictive accuracy and stability.

Our findings demonstrate the superiority of the meta-ensemble
model in capturing complex relationships within the data, offering a
promising tool for the design of safer and more effective ionic liquids.

1.4. Organization
The rest of the paper is organized as follows: Section 2 describes the

materials and methods used in this study, as well as the assessment cri-
teria adopted for the experiments. Section 3 discusses the observations



S. Sadaghiyanfam et al.

Table 1

Data for ionic liquids and their experimental 1ogECs,.

Artificial Intelligence Chemistry 3 (2025) 100087

IL No. SMILES Experimental 10gECs,
1 [N+](C)(C)(CC)COCC.[CI-] 3.59
2 O1c4c(O[B-]1120¢3c(02)ccce3)ecce4.CC[N+](CC)(CC)CC 1.17
3 [N+](C)(C)(Celecece1)CCCCCCCCCC. [Cl-] 0.64

and presents the results of the proposed approaches. Finally, Section 4
provides a summary and conclusion.

2. Materials and methods

This study is comprehensively structured into five steps: Data Ac-
quisition, Feature Extraction, Feature Reduction, Model Development,
and Model Application. Each step and the operations performed within
them are explained in detail under their respective sub-headings.

2.1. Dataset description

In this study, the data for the toxicity prediction of ionic liquids was
obtained from the article by [35]. Toxicity is expressed as logECs, the
base-10 logarithm of the half-maximal effective concentration (ECs)
measured in micromolar (4 M). Higher values of 10gEC5, indicate lower
toxicity. The dataset includes information on the toxicity of various
ionic liquids (ILs) measured by their logECs,, values. The dataset com-
prises 355 entries of different ionic liquids, each characterized by
SMILES (Simplified Molecular Input Entry System) and corresponding
Experimental 1ogECs, which experimentally represent the toxicity of
the Ionic Liquid. Below is a sample of the data showing a few rows to
illustrate the structure and type of information included: (see Table 1).

2.1.1. Distribution of cation families and anions in the dataset
That dataset includes a diverse range of cations and anions. Below,
we provide a detailed breakdown of the dataset:

Cation families.

+ 1-Butyl-3-methylimidazolium: Present in 9 instances
+ 1-Ethyl-3-methylimidazolium: Present in 5 instances
+ 3-Methyl-1-octylimidazolium: Present in 4 instances
+ 3-Methyl-1-nonylimidazolium: Present in 3 instances

Other cations, including pyridinium, ammonium, and morpholinium-
based structures, appear less frequently, contributing to the dataset’s
diversity.

Anions families. The most frequent anions in the dataset are:

» Amide: 52 instances

» Chloride: 43 instances (combining capitalization variations)

+» Tetrafluoroborate: 38 instances (including alternative spellings)
» Bromide: 14 instances (combining capitalization variations)

Less common anions include sulfate, acetate, and phosphate, among
others. These anions further expand the chemical diversity of the
dataset.

We conducted several analyses to ensure the dataset’s quality and
reliability. The Tanimoto similarity index was used to evaluate the
structural diversity of the molecules, confirming that the dataset in-
cludes a broad range of compounds and is not biased toward particular
chemical structures.

Additionally, a violin plot was utilized to examine the distribution
of toxicity values, helping to identify any skewness or anomalies. These
quality assessments verify the dataset’s suitability for developing robust
predictive models. Detailed explanations of the Tanimoto similarity and
Violin plot analyses are provided in the subsequent sections.

The data used in this study can be found in the Supplementary
Information.

2.1.2. Tanimoto similarity

The Tanimoto Similarity, often referred to as the Jaccard index, is
a measure used to assess the similarity between two sets. In chem-
istry and molecular informatics, this metric is commonly applied to
compare chemical structures. It plays a crucial role in activities like
virtual screening, molecular fingerprinting, and compound clustering.
This definition is detailed in the article by Willett et al. [36]. The
overall similarity of the molecules was calculated and expressed as a
percentage, resulting in approximately 19.21%. This indicates that, on
average, the molecules in the dataset share about 19.21% similarity
with each other based on the Tanimoto Similarity index. A similarity
percentage of 19.21% (or 0.1921) falls within the “Low Similarity”
range. This suggests that, on average, the molecules in the dataset do
not share many common features and are relatively diverse.

This study aims to explore a diverse set of molecules, where a low
Tanimoto similarity percentage is desirable, as it reflects a wide variety
of chemical structures (Fig. 2). The observed overall similarity of
19.21% indicates significant structural diversity, which is advantageous
for investigating a broad spectrum of chemical properties. The detailed
Tanimoto similarity matrix is provided in the Supporting Information
as an Excel file.

2.1.3. Violin plot

A violin plot combines the features of a box plot — summarizing
statistics such as the median, interquartile range, and outliers — with a
kernel density plot, which represents the data’s probability density. To
estimate this density, a kernel smoothing function, typically Gaussian,
is applied, allowing for a more detailed and continuous visualization of
the data distribution. The violin plot is an effective tool for visualizing
the distribution [37] of toxicity values in the dataset, offering both
summary statistics and insights into the data’s density and variability
For a comprehensive guide, refer to Atlassian [38]. In this study,
toxicity is quantified as 1ogECs, indicating the concentration at which
an ionic liquid exhibits a 50% toxic effect. These values are expected
to be continuously distributed, reflecting a spectrum of toxic effects
across varying concentrations. The violin plot integrates the features
of a box plot with a kernel density plot, enabling us to observe the
median, interquartile range, potential outliers, and the overall shape
of the data’s distribution. This visualization is particularly useful for
detecting patterns such as skewness, bimodal distributions, or clusters
that might not be apparent from summary statistics alone.

Fig. 3 presents the violin plot, depicting the distribution of logECs,
values (where 10gECs, is the logarithmic concentration (in mol/L) at
which a compound causes a 50% toxic effect) for the ionic liquids in
our dataset. The figure illustrates the following key points:

+ Consistent Distribution: The logECs, distributions across the
Training, Test, and Validation datasets exhibit consistency, con-
firming that the dataset splitting process preserved the original
characteristics of the data.

Balanced Representation: The visualization underscores a well-
balanced and representative distribution across all subsets, facili-
tating robust model training, validation, and testing.

Enhanced Comparability: The integration of all data splits into
a single plot provides a clear and comprehensive perspective,
enabling the identification of potential biases and ensuring the
interpretability of the dataset.
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Fig. 2. Clustered heatmap of the Tanimoto similarity matrix for the dataset. Each cell represents the Tanimoto coefficient between two molecules, ranging from 0 (no similarity)
to 1 (identical structures). The hierarchical clustering highlights groups of structurally similar molecules, providing insight into the diversity of the dataset.
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Fig. 3. Distribution of logECs, values across the Training, Test, and Validation datasets.
Using logECs, aligns directly with standard practices in computa- classifications and fostering transparency. More details can be found
tional toxicology, offering a clear and consistent metric for toxicity in [39].

measurement. This approach eliminates ambiguity and ensures align-

ment with widely recognized methodologies in the field. Displaying 2.1.4. Data augmentation

the distributions for Training, Test, and Validation sets keeps the focus Data augmentation is a technique that enriches the diversity and
on the data critical to modeling, avoiding the need for subjective size of the training data without the collection of more data. For
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molecular data, molecular structures are usually represented in the
form of SMILES (Simplified Molecular Input Line Entry System) strings.
The following augmentation techniques have been used:

1. Canonical SMILES Generation:

* The canonical SMILES is a unique representation of a
molecule in a standardized format [40].

« This standardization ensures a consistent and unique rep-
resentation of molecules, preventing redundant entries and
providing a reliable input for machine learning models.

2. Random SMILES Generation:

» Multiple random SMILES strings were generated for each
molecule by randomizing the ordering of atoms and bonds
while maintaining the molecular structure [41].

+ This introduces variability in the representation, enabling
the model to generalize better across different inputs.

3. Tautomer Enumeration:

+ Tautomers are alternate forms of a molecule that differ in
the placement of hydrogen atoms and double bonds [42].

+ Using RDKit’s TautomerEnumerator, all possible tau-
tomers for each molecule were generated, ensuring chem-
ically relevant variations are included in the dataset.

The implementation workflow for preparing the augmented dataset
is outlined below:

1. Read the Original Dataset:

+ The dataset containing 355 ionic liquids with their SMILES
strings and experimental logECs, values was loaded.

2. Apply Augmentation for Each Molecule:

+ Generate the canonical SMILES.

+ Create multiple random SMILES (default: 5 variations per
molecule).

» Enumerate all possible tautomers of the molecule.

» Combine all augmented SMILES into a unique set to avoid
duplicates.

3. Retain the Original Toxicity Values:

» Each augmented SMILES representation was assigned the
same experimental 10gECs, value as the original molecule
to maintain consistency in the toxicity data.

4. Compile the Augmented Dataset:

» The augmented dataset was saved as a new CSV file, ready
for downstream machine learning tasks.

Tautomerization and its limited influence on ionic liquid toxicity. Tau-
tomerization, a process involving hydrogen atom migration accom-
panied by changes in bonding arrangements (e.g., keto-enol shifts),
is well-documented to affect properties such as solubility, pKa, and
binding affinities in drug-like molecules [43]. However, its impact
on ionic liquids is negligible due to their distinct physicochemical
characteristics [44].

The primary factors influencing ionic liquid toxicity are as follows:

+ Cation-Anion Interactions: The pairing of cations and anions
plays a critical role in determining ionic liquid properties, in-
cluding stability, hydrophobicity, and lipophilicity, which directly
influence toxicity .
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» Structural Rigidity: Ionic liquids generally possess rigid frame-
works and well-defined charge distributions, reducing the rele-
vance of tautomerization in their property modulation.

Each augmented SMILES string is assigned the same experimental
logECs, value as the original molecule from which it was derived.
This approach is predicated on the assumption that the structural
modifications introduced during augmentation, such as canonicaliza-
tion, randomization, and tautomerization, do not fundamentally alter
the core chemical properties that influence toxicity. The augmented
data used in this study can be found in the Supplementary mate-
rial. To enhance model robustness and generalization, the dataset
was augmented with Random SMILES strings and tautomers. Random
SMILES were generated to address potential biases from canonical
SMILES encoding, ensuring the model focuses on core molecular prop-
erties rather than overfitting to specific patterns. We implemented a
rigorous standardization process using canonical SMILES generated by
RDKit’s “Chem.MolToSmiles” function with the “canonical=True” ar-
gument. This process ensures that each unique molecule is represented
by a single, deterministic SMILES string, thereby removing redundancy
caused by different atom and bond orderings. Similarly, tautomers,
as alternative structural forms of molecules, were included to capture
biologically relevant variability. Assuming similar toxicity across tau-
tomers due to their comparable physicochemical properties, consistent
logECs values were assigned to all forms. The initial dataset comprised
355 instances. After data augmentation, the dataset size expanded
to 2119 instances, with a total of 1744 missing values identified,
significantly increasing its diversity and enhancing the robustness of
the predictive models.

2.2. Featurization stage

The featurization phase of our framework involves two types of
featurizers. Each featurizer processes SMILES strings and generates
fixed-length base features as output. These two steps, conversion of
SMILES strings to molecular fingerprints and calculation of molecular
descriptors, are where the transformation of chemical information en-
coded in SMILES (simplified molecular input line entry system) strings
into numerical representation suitable for machine learning models is
critical in our framework.

2.2.1. Logarithm of the half maximal effective concentration (logECs,)

logECs, is the base-10 logarithm of the ECsy value, where ECs,
represents the concentration of a substance needed to produce 50%
of its maximal effect [45]. In the context of our study, it reflects the
logarithmic transformation of the half-maximal effective concentration
of ionic liquids (ILs) that inhibit acetylcholinesterase (AChE) enzyme
activity. This transformation simplifies comparison across substances
with varying potencies and is a standard metric in toxicological re-
search [46]. Toxicity is expressed as logECs, in the literature where
higher values of 1ogECs, indicate lower toxicity [35,47].

2.2.2. Conversion to molecular fingerprints

The initial step in the featurization process involves converting
SMILES strings into molecular fingerprints. For this study, we employed
the Morgan algorithm to generate Extended-Connectivity Fingerprints
(ECFP) as fixed-length bit vectors, encoding topological molecular fea-
tures. Specifically, ECFP4 (with a diameter of 4) was generated using
a radius parameter of 2. This choice effectively captures key molecular
substructures, making it a widely accepted input for cheminformat-
ics and machine learning applications. The workflow translated input
SMILES strings into RDKit [48] molecule objects, with the Morgan
algorithm subsequently used to compute the fingerprints. For invalid
SMILES strings, a zero-vector of the designated length was generated.
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Parameter selection for ECFP. The Extended-Connectivity Fingerprints
(ECFP) were generated using a bit vector length of 2048 and a radius
of 2, corresponding to the widely used ECFP4 fingerprint. These param-
eters were selected based on their ability to effectively encode the topo-
logical features of molecular structures while balancing computational
efficiency and representational quality.

Radius (2): The two-bond radius captures local structural environ-
ments around each atom. This strikes a balance between detail and
efficiency, avoiding the sparsity of smaller radii (e.g., ECFP2) and the
redundancy of larger ones (e.g., ECFP6). ECFP4 has been demonstrated
as effective in QSAR modeling due to its detailed representation of
molecular substructures.

Length (2048): A 2048-bit vector minimizes hash collisions, en-
suring sufficient resolution to distinguish diverse molecular structures.
This bit length is a standard in cheminformatics, balancing representa-
tion quality and computational cost.

2.2.3. Calculation of RDKit descriptors

In addition to molecular fingerprints, a full set of RDKit molecular
descriptors is computed for each SMILES string. Descriptors are used to
numerically represent various chemical characteristics of the molecule.
This involves converting a SMILES string to an RDKit molecule ob-
ject, applying a set of pre-defined RDKit descriptor functions to that
molecule, and then generating an array of values for those descriptors.
The molecular descriptors were calculated using RDKit’s Descriptors.de-
scList, which provides a comprehensive set of physicochemical, topo-
logical, and electronic properties. These descriptors include molecular
weight, LogP, TPSA, and molecular connectivity indices, calculated
based on established methodologies [49-51]. Detailed definitions can
be found in the RDKit documentation [48].

Number of RDKit descriptors. A total of 210 RDKit molecular descrip-
tors were generated for each compound. These descriptors provide
a numerical representation of various molecular properties, including
topological, geometrical, and physicochemical features.

Handling of Cations and Anions: Each ionic liquid in the dataset
consists of a cation and an anion, represented together as a single
SMILES string. The RDKit descriptor calculation function processes the
entire SMILES string as a unified entity. This approach ensures that the
descriptors capture the combined structural and chemical features of
both the cation and the anion, effectively reflecting their interactions
and their contributions to the ionic liquid’s overall properties. For cases
where a SMILES string is invalid or cannot be processed, a zero vector
of length 210 is assigned. This maintains consistency across the dataset
and ensures compatibility with the machine learning pipeline.

If the SMILES string is invalid, a corresponding zero vector of the
appropriate length is then generated. These molecular fingerprints and
descriptors provide a combined, strong, and extensive representation of
molecular data that improves the performance of the following machine
learning tasks through the incorporation of both topological features
and chemical properties, which make the models more predictive.
Descriptor names are described in Supporting Information.

2.2.4. Combining molecular features for enhanced predictive modeling
The molecular fingerprints and descriptors are combined into a com-
plete feature matrix by stacking them in one large numpy array. Finally,
these two arrays are concatenated to form one single feature matrix, X,
while the target variable, representing experimental logECs, values, is
contained in y. This enables the models to have higher predictive power
through integration with rich representations of chemical data.
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2.3. Feature selection using recursive feature elimination with random forest

In this study, the selection of features was a critical step to ensure
that the predictive model was both effective and efficient. Given the
high dimensionality of the dataset, with 2,258 potential features, it was
essential to reduce this number to prevent overfitting, enhance model
interpretability, and improve computational efficiency.

To identify the optimal number of features, we employed the Elbow
Method in conjunction with Recursive Feature Elimination (RFE) [52]
using a Random Forest Regressor [53]. The Elbow Method is a widely
recognized technique for determining the point at which adding more
features yields diminishing returns in terms of model performance. We
evaluated the model’s performance across a range of feature subsets
by systematically reducing the number of features and monitoring
the cross-validation R? score. The feature evaluation process involved
testing subsets of features ranging from 50 to 2,258, with specific
increments to capture the most informative features while balancing
the computational cost. The R2 scores obtained from 5-fold cross-
validation were plotted against the number of features to visually
identify the “elbow point”—the point where the performance gain
begins to plateau.

Our analysis revealed that the model’s performance peaked at
around 650 features, achieving the highest R? score within this range
(see Fig. 4). This observation indicated that 650 features provided
the best balance between model complexity and predictive accuracy.
Features beyond this point did not contribute significantly to model
performance and potentially introduced noise, thereby justifying the
decision to retain only the top 650 features.

By selecting 650 features, we ensured that the model maintained
high predictive power while minimizing the risk of overfitting and
reducing computational overhead. This selection process was informed
by both empirical evidence from the Elbow Method and the theoretical
understanding that including too many features can degrade model
performance. Thus, the chosen feature set represents the most efficient
and effective subset of features for predicting the toxicity of ionic
liquids in our study.

2.3.1. Addressing limitations of random forest feature importance

While the Random Forest algorithm provides useful feature im-
portance scores, it has known limitations when handling correlated
features. Specifically, when two features are highly correlated, their
importance can be split, leading to shared and potentially undervalued
rankings. To mitigate this issue:

« Recursive Feature Elimination (RFE): The use of RFE ensures
that features are iteratively evaluated and eliminated based on
their contribution to model performance. This systematic process
reduces redundancy and isolates the most informative features.
Cross-Validation with R? Scores: To further validate feature
importance, a range of feature subsets was evaluated using 5-fold
cross-validation, ensuring that the selected features contribute
meaningfully to toxicity prediction across different data splits.
Elbow Method for Optimal Feature Selection: By employing
the Elbow Method (Fig. 4), we identified the optimal subset of
650 features, balancing model performance and complexity.

Our approach minimizes the limitations associated with correlated
features in Random Forest while ensuring the robustness and inter-
pretability of the selected features. For further theoretical context
on the limitations of feature importance methods, readers may refer
to [54].
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Elbow Method for Optimal Number of Features
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Fig. 4. Elbow Method for determining the optimal number of features. The peak R? score is observed around 650 features.

2.3.2. Feature selection process and reproducibility

Recursive Feature Elimination (RFE) with a Random Forest Regres-
sor was employed to determine the optimal number of features for
predicting toxicity. The process involved evaluating subsets of features
ranging from 50 to 2258, with features removed in increments of 50 ini-
tially and larger steps (200) at higher ranges. A 5-fold cross-validation
was conducted using the R? score as the performance metric.

The subset with 650 features was selected as optimal based on the
following considerations:

+ Highest Mean R? Score: The subset with 650 features pro-
duced the highest mean R? value across cross-validation folds,
demonstrating slightly better generalization compared to smaller
subsets.

Minimization of Redundancy: Larger subsets (e.g., 1000+ fea-
tures) introduced redundancy, which did not improve model
performance but increased computational complexity.
Retention of Key Features: Smaller subsets (e.g., 50 or 100
features), while achieving competitive R? scores, excluded impor-
tant molecular descriptors such as SMR_VSAS5 and fr_unbrch_
alkane. The 650-feature subset ensured that key molecular
properties were retained without introducing noise.

Narrow Range of R?> Values: Although the R? values for subsets
above 50 features fell within a narrow range, the selection of 650
features was justified by its superior balance between performance and
feature diversity. Fig. 4 shows the R? scores across evaluated subsets,
highlighting the plateau at 650 features.

Reproducibility Measures: To ensure reproducibility:

+ A fixed random seed (random_state=42) was used during RFE
and cross-validation.

This robust process ensured that the selected features captured
meaningful molecular properties and contributed effectively to model
generalization.

2.4. Base model stage

This stage outlines the methodology employed for training the
predictive models, including the selection and training of base models.

The base learning phase comprises four distinct base models, each
trained on features derived from the featurization stage.

- Random Forest (RF): It is a robust base learner that builds
multiple trees on bootstrapped samples with random feature sub-
sets, enhancing predictive accuracy and reducing overfitting. It
is suitable for large, high-dimensional datasets, capturing com-
plex patterns and interactions, and provides feature importance
measures for model interpretation.

Support Vector Regression (SVR): It is utilized as a base model
due to its effectiveness in high-dimensional spaces and its ability
to handle non-linear relationships through kernel functions. It
aims to find a function with deviations within a specified margin
while maximizing the margin of tolerance. Fine-tuning hyperpa-
rameters like the penalty parameter and kernel type enhances its
performance, making SVR valuable for capturing complex data
patterns [55].

Categorical Boosting (CatBoost): CatBoost, derived from Cat-
egorical Boosting and developed by Yandex, is used as a base
model for its superior handling of categorical data and protec-
tion against overfitting. It processes categorical features natively

with minimal preprocessing, improving model performance. The
ordered boosting technique prevents target leakage and overfit-
ting, especially in small datasets. Optimized for both CPU and
GPU, CatBoost is efficient for large-scale datasets and excels in
managing complex data patterns with automated hyperparameter
tuning, making it a valuable component of the ensemble [56].

Chemception: ChemCeption leverages convolutional neural net-

works (CNNs) to process and analyze chemical data, specifi-
cally using SMILES strings and molecular graphs. It automati-
cally extracts features from raw chemical data, eliminating the
need for extensive manual feature engineering. This enhances
the predictive power of models in cheminformatics by capturing
complex relationships in molecular structures. With end-to-end
learning, ChemCeption allows direct learning from chemical rep-
resentations, making it a powerful tool for tasks such as molecule
property prediction, drug discovery, and material science [57].



S. Sadaghiyanfam et al.

2.5. Meta-model learning

A meta-model learning approach was implemented to combine pre-
dictions from multiple base models, including Random Forest, Support
Vector Regressor (SVR), CatBoost, and a convolutional neural network
(Chemception). Model-ensemble learning enhances predictive capabil-
ities by combining outputs from multiple base models [58,59]. Key
benefits include:

» Improved Predictive Accuracy: Ensembles combine the
strengths of individual models, often outperforming any single
model by reducing the impact of individual weaknesses.
Reduction in Overfitting: Averaging or voting across models
stabilizes predictions and reduces variance, particularly in small
or noisy datasets.

Diversity in Predictions: By leveraging the strengths of both
linear models (e.g., Ridge Regression for linear trends) and non-
linear models (e.g., Decision Trees for complex patterns), ensem-
bles deliver more robust results.

Improved Generalization: Ensembles generalize better to un-
seen data, minimizing biases from individual models.
Flexibility: Combining diverse models with different architec-
tures or training methods optimizes performance by utilizing a
wide range of data characteristics.

The final meta-model was built using XGBoost, introduced by Chen
and Guestrin [60], which aggregated the outputs of these base models
to improve predictive accuracy. XGBoost’s efficacy has been widely
acknowledged in molecular property and toxicity prediction tasks.
Its ability to capture non-linear relationships, coupled with robust
regularization and scalability, makes it an indispensable tool for chem-
informatics applications.

The dataset consisted of 355 samples and 650 features. The Chem-
ception model, a key component of the meta-model, comprised a
ConvlD layer, MaxPooling1D layer, and two Dense layers, with a total
of 1,034,085 trainable parameters. This architecture allowed the model
to capture complex patterns necessary for accurate predictions. To
prevent overfitting, 5-fold cross-validation was used during training,
and hyperparameters were optimized using GridSearchCV for XG-
Boost and RandomizedSearchCV for Chemception. Regularization
terms (L1 and L2) were applied in XGBoost to penalize complexity and
promote generalization.

Overall, the meta-model effectively integrated the strengths of mul-
tiple models, resulting in a robust and accurate predictive framework
that was well-tuned and generalizable.

2.6. Hyperparameter tuning

In this research, GridSearchCV was employed for hyperparameter
tuning to optimize model performance. GridSearchCV, a cross-validated
exhaustive search method from Sklearn, systematically explores the
hyperparameter space to identify optimal parameters. This approach
enhances predictive accuracy and robustness by using cross-validation
to evaluate each combination, providing reliable performance estimates
and avoiding overfitting. For a comprehensive understanding, please
refer to the following paper [61].

2.7. Model evaluation

To evaluate the performance of the meta-model on the test set,
several key statistical metrics were employed. These metrics included
the Coefficient of Determination (R2), Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and Pearson Correlation Coefficient
(r). The following formulas were used to calculate these metrics:
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In these formulas, y; refers to the observed toxicity values from
the test set, while §; represents the predicted values generated by the
meta-model. The term » is the total number of data points used in the
evaluation. To account for different magnitudes in y;, the metrics are
calculated using the raw observed values without scaling, as this study
focuses on directly comparing predictions to actual values. The RMSE
and MAE provide insight into the model’s error magnitude, with RMSE
being more sensitive to larger errors due to the squaring of residuals. A
small scale in these metrics indicates that the errors are generally low,
whereas a large scale suggests more significant discrepancies between
predicted and observed values.

Additionally, the standard deviation of the errors was calculated
to assess the consistency of the model’s predictions. A low standard
deviation indicates that the errors are tightly clustered around the mean
error, suggesting reliable performance across different data points. The
Pearson Correlation Coefficient, which measures the linear relationship
between predicted and observed values, further supports the robustness
of the model’s predictions. The scikit-learn package [62] in Python was
utilized to implement these evaluation metrics, ensuring standardized
and reliable calculations across all test scenarios.

3. Implementation details

Python libraries ‘RDkit’, ‘NumPy’ [63], and ‘scikit-learn’ were used
in this study.

3.1. Process of converting SMILES strings to molecular fingerprints

» Molecular Fingerprint Conversion: The “smiles_to_fingerprint”
function utilized RDKit to transform SMILES strings into molec-
ular fingerprints through the Morgan algorithm. It returned the
fingerprint as a NumPy array or a zero bit vector if the molecule
conversion fails. Consequently, 2048 molecular fingerprints were
computed.

Descriptor Calculation: The “calculate_descriptors” function
computed molecular descriptors from a SMILES string using ‘RD-
Kit’. It returned the descriptors as a ‘NumPy’ array or a zero array
if the molecule conversion fails. Consequently, 210 molecular
descriptors were computed.
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Fig. 5. The top 20 features identified as the most important for predicting toxicity include descriptors such as SMR_VSA5 (van der Waals surface area weighted by refractivity),
MolMR (molecular refractivity), and fr_unbrch_alkane (unbranched alkane fragments). These descriptors provide insights into the physicochemical properties of ionic liquids,
such as dispersion forces, molecular flexibility, and electronic activity, which are critical for understanding their interaction with acetylcholinesterase enzymes and resulting toxicity.
For example, high values of SMR_VSA5 suggest strong dispersion interactions with biological targets, while features like EState_VSA8 and PEOE_VSAG6 indicate electronic activity

in specific molecular regions.

» Feature Matrix Construction: Fingerprints and descriptors were
extracted from the dataset and converted to NumPy arrays. These
arrays were concatenated along the horizontal axis to form a com-
bined feature matrix X. The target variable, representing experi-
mental logECs, values, was extracted and stored in y. Ultimately,
a total of 2258 features were collected.

Imputation of Missing Values: In the literature, there are several
proposed methods to impute missing values: mean imputation,
median imputation, K nearest neighbor (KNN) imputation, predic-
tive mean matching, Bayesian Linear Regression (norm), Linear
Regression, non-Bayesian (norm. nob), and random sample [64].
Among these recommended methods, Mean imputation is the sim-
plest and quickest imputation method. To handle missing values
in the feature matrix X, the SimpleImputer class from scikit-learn
was employed with the strategy set to ‘mean’. In the original
dataset, the number of missing values was 292, whereas in the
augmented dataset, the number of missing values increased to
1744. The imputer was fitted to X, and the missing values were
replaced with the mean value of their respective feature columns.

3.2. Feature selection with RFE

« Initial Feature Evaluation and Selection: To identify the most
important features, RFE was applied using a RandomForestRe-
gressor with 100 estimators as the underlying model. The process
began with a broad evaluation of feature subsets, where the
optimal number of features was determined using cross-validation
with R? as the performance metric. This evaluation involved
iteratively eliminating less important features and identifying
the subset that provided the highest cross-validation score. The
optimal number of features was found to be 650, based on the
“elbow method” from the plotted cross-validation scores. The RFE
process was then refined to select this optimal number of features,
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resulting in a new feature matrix (X,,;..;.q) that included only the
most relevant features.

Feature Importance Ranking and Visualization: The impor-
tance of the selected features was subsequently evaluated and
ranked according to the RandomForestRegressor model’s feature
importance scores. The top features were visualized in a bar
plot, highlighting the most significant contributors to the model’s
predictive performance. Fig. 5 illustrates the top 20 significant
features, as determined by the RandomForestRegressor model
utilizing Recursive Feature Elimination (RFE).

3.3. Data split

The dataset was split randomly into training and testing sets, with
80% of the data used for training and 20% for testing. To ensure
reproducibility, the splitting process was controlled using a fixed ran-
dom state value of 42. The same splitting strategy was applied to the
augmented dataset.

3.4. Hyperparameter tuning of base models

This section details the creation, hyperparameter tuning, and selec-
tion of several base models used in the study: RandomForestRegressor,
Support Vector Regressor (SVR), CatBoost Regressor, and Chemception
(a specialized convolutional neural network designed for chemical data
analysis) (see Tables 2 and 3).

GridSearchCV was used for the RandomForestRegressor, SVR, and
CatBoost Regressor with 5-fold cross-validation (cv=>5) and parallel
computation (n_jobs=-1). RandomizedSearchCV was employed for
the Chemception model with 3-fold cross-validation (cv=3). Grid-
SearchCV with 5-fold cross-validation was considered as an appropriate
approach to RandomForestRegressor, SVR, and CatBoost Regressor in
balancing the bias-variance in model selection during hyperparameter
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Table 2
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Hyperparameter grids and best parameters for RandomForestRegressor, SVR, and CatBoost Regressor.

Model Type

Parameters

Hyperparameter Grid

RandomForestRegressor

n_estimators: [100, 200]
max_depth: [None, 10, 20]
min_samples_split: [2, 5]

Best Parameters

n_estimators: 200
max_depth: None
min_samples_split: 2

Hyperparameter Grid

Support Vector Regressor (SVR)

kernel: [‘rbf’]
C: [0.1, 1, 10]
gamma: [‘scale’, ‘auto’]

Best Parameters

kernel: ‘rbf’
C: 10
gamma: ‘auto’

Hyperparameter Grid

CatBoost Regressor

depth: [6, 8]
learning rate: [0.1, 0.01]
iterations: [100, 200]

Best Parameters

depth: 8
learning_rate: 0.1
iterations: 200

Table 3
Hyperparameter grid and best parameters for the Chemception Model.
Model Type Parameters
Layers Convolutional Layer with ReLU activation

MaxPooling Layer

Flatten Layer

Dense Layer with ReLU activation
Output Layer for regression

Hyperparameter Grid

Chemception Model

filters: [32, 64]

kernel size: [3, 5]

pool size: [2, 3]
dense_units: [50, 100]
epochs: [10, 20]
batch_size: [10, 20]
learning_rate: [0.001, 0.01]

Best Parameters

filters: 64
kernel_size: 3

pool size: 2
dense_units: 100
epochs: 20
batch_size: 10
learning_rate: 0.001

tuning, which was computationally efficient and conforms to most
widely accepted standards in machine learning. In contrast, for the
Chemception model, a 3-fold cross-validated RandomizedSearchCV was
preferred because training deep neural networks is computationally
expensive, yet this fold size guarantees a fair evaluation of model per-
formance for most problems when conducting hyperparameter tuning.
This will allow model evaluation to be both reliable and efficient.

3.5. Creation of meta-features through cross-validated predictions

To improve the ensemble model’s predictive accuracy, cross-
validated predictions from each optimized base model were generated
and utilized as meta-features. In the context of stacked ensemble
learning, ‘meta features’ refer to the predictions generated by base
models during the training and testing phases. These features serve
as inputs to a higher-level model, known as the meta-model. For
instance, in our study, predictions from models such as RandomForest,
SVR, CatBoost, and Chemception were stored as meta features. These
features encapsulate the diverse learning patterns captured by the
base models and enable the meta-model to learn and refine the final
prediction. An empty array, “meta_features”, was created to store these
predictions. Using 5-fold cross-validation, predictions were obtained
for the RandomForestRegressor, Support Vector Regressor (SVR), and
CatBoost Regressor. For the Chemception model, predictions were also
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generated using 5-fold cross-validation, with careful reshaping to fit
into the meta-feature array. This approach ensured that predictions for
each training sample were made by models that had not encountered
the sample during training, thus preventing overfitting and providing
a dependable set of meta-features. These meta-features were then used
as inputs for the meta-model in the stacking ensemble, leveraging the
combined strengths of the base models to enhance overall predictive
performance.

3.6. Hyperparameter tuning for the meta-model (XGBoost)

To optimize the meta-model in the stacking ensemble, an XGBoost
regressor was fine-tuned using GridSearchCV. The hyperparameter grid
and the best parameters identified are summarized in Table 4. The
hyperparameter learning rate has a value, 0.2, which is higher than the
typical values in such ranges. This value was obtained through vigorous
hyperparameter tuning and found to be optimal. We experimented with
a wide setting range going from as low as from 0.00001 up to 0.005.
Nevertheless, from the cross-validation results, it was depicted that
the learning rate equal to 0.2 offered the best performance level for
this specific dataset. Similarly, other hyperparameters were also tuned
over broad ranges to ensure optimal settings. Values, like the learning
rate, were chosen empirically following systematic testing and not
arbitrarily. These values best matched data characteristics — empirical
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Table 4

Hyperparameter grid and best parameters for the XGBoost
meta-model.

Parameter Values Best value
n_estimators [100, 200] 100
max_depth [3, 6, 9] 6

learning rate [0.01, 0.1, 0.2] 0.2
subsample [0.7, 0.8, 1.0] 0.8
colsample_bytree [0.7, 0.8, 1.0] 0.8

trends - that focused attention toward dataset-specific tuning rather
than standard published ranges.
The best XGBoost regressor configuration was:

Best XGBoost Regressor Configuration

XGBRegressor(base_score=None, booster=None,
callbacks=None,

colsample_bylevel=None, colsample_bynode=None,
colsample_bytree=0.8, device=None,

early_stopping rounds=None,

enable_categorical=False, eval metric=None,
feature_types=None,

gamma=None, grow_policy=None, importance_type=None,
interaction_constraints=None, learning rate=0.2,
max_bin=None,

max_cat_threshold=None, max_cat_to_onehot=None,
max_delta_step=None, max_depth=6, max_leaves=None,
min_child weight=None, missing=nan,
monotone_constraints=None,

multi_strategy=None, n_estimators=100, n_jobs=None,
num_parallel_tree=None, random_state=42, ...)
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Fig. 6. Actual vs Predicted Experimental logECs5, without data augmentation.
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Fig. 7. Actual vs Predicted Experimental logECs, with data augmentation.

Table 5
Performance metrics comparison for the ensemble model with and without data
augmentation.

This process ensured the meta-model effectively combined the
strengths of the base models for enhanced predictive performance.

3.7. Creation of meta-features for the test set

To test the ensemble model on the test set, the meta_features were
generated from all optimized base model predictions. An empty list,
test_meta_features, was initialized to hold it. Results from the test set
of “RandomForestRegressor”, “SVR”, and “CatBoost Regressor” were
placed in the first three columns of test_meta_features. The “Chemcep-
tion” test set was also reshaped as required for its predictions, and
their predictions were placed in the fourth column. This was done
with the assurance that the meta-features were derived from well-
tuned models, thus providing reliable inputs for the meta-model in the
stacking ensemble to increase predictive performance.

3.8. Final prediction with the meta-model

After generating meta-features from the optimized base models, the
best XGBoost regressor was used to make the final predictions. The
test_meta_features array, containing the base models’ predic-
tions, served as input for the XGBoost meta-model. The optimized XG-
Boost regressor then produced the final test set predictions, leveraging
the strengths of all base models to enhance accuracy.

4. Results and discussion
4.1. Comparative model performance analysis
This section offers a comparison of the ensemble model’s perfor-

mance with and without data augmentation, assessing the impact of
data augmentation by examining the alignment between predicted and
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Metric Without augmentation ~ With augmentation
Root Mean Squared Error (RMSE) 0.383646 0.055850
Mean Absolute Error (MAE) 0.295523 0.020458
R-squared 0.878808 0.996990
Pearson Correlation 0.940181 0.998510

actual values, along with the residuals’ distribution. As summarized in
Table 5, the performance metrics clearly demonstrate the advantages
of data augmentation. The ensemble model with data augmentation
shows a significant reduction in Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE), alongside substantial improvements in R-
squared and Pearson Correlation values, indicating a stronger fit and
enhanced predictive accuracy.

4.1.1. Actual versus predicted values

The relationship between the actual and predicted experimental
logECs values is illustrated in Figs. 6 and 7. Fig. 6 shows the outcomes
for the model without data augmentation. The scatter plot demonstrates
that the predicted values correspond fairly well with the actual values,
though some deviations from the diagonal line are noticeable, partic-
ularly at higher 1ogECg, values. This suggests that while the model
performs adequately, there is room for improvement in predicting the
more extreme values.

On the other hand, Fig. 7 presents the results for the model with
data augmentation. The scatter plot reveals a much tighter clustering of
points around the diagonal line, indicating a significant improvement in
prediction accuracy. The improved alignment suggests that the model
with data augmentation more effectively captures the underlying pat-
terns in the data, resulting in more reliable predictions across the full
range of experimental values.
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Fig. 9. Residuals Distribution with data augmentation.

4.1.2. Residuals distribution

The residuals distribution for both models is illustrated in Figs. 8
and 9. Fig. 8, which corresponds to the model without data augmenta-
tion, displays a broader distribution of residuals centered around zero.
Although the residuals follow a normal distribution, the wider spread
indicates greater variability in the model’s errors, implying that the
predictions are less consistent.

Conversely, Fig. 9 shows the residual distribution for the model
with data augmentation. This distribution is much narrower and more
sharply centered around zero, indicating a significant reduction in
prediction errors. The decreased variability in residuals suggests that
the augmented model not only enhances accuracy but also improves
the consistency and reliability of the predictions.

4.2. Confidence interval analysis and statistical significance

To evaluate the precision and accuracy of the predictive models,
both with and without data augmentation, an extensive statistical anal-
ysis was conducted. This involved calculating 95% confidence intervals
for each predicted value and performing a paired t-test to compare the
predictions against the actual experimental data.

Without Data Augmentation:

The model without data augmentation generated a mean prediction
value of 2.9527, with a 95% confidence interval spanning from 2.6760
to 3.2294. Specific confidence intervals, such as (2.944, 3.488) and
(3.230, 3.774), were relatively narrow, suggesting a moderate level
of certainty in these predictions. However, the standard deviation of
the errors was 0.396, indicating greater variability in the predictions.
The paired t-test resulted in a t-statistic of —1.053 and a p-value of
0.296, which is higher than the standard significance level of 0.05. This
indicates that there is no statistically significant difference between
the predicted and actual values. While the model’s predictions are
generally consistent with the experimental data, the confidence in these
predictions is somewhat lower due to the higher variability.
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With Data Augmentation:

The model with data augmentation exhibited a marked improve-
ment in prediction accuracy. The mean prediction value slightly in-
creased to 3.0965, with a more precise 95% confidence interval rang-
ing from 2.9994 to 3.1936. The confidence intervals for specific pre-
dictions, such as (3.468, 3.662) and (3.213, 3.408), were narrower,
indicating a higher degree of certainty. Additionally, the standard
deviation of the errors significantly decreased to 0.086, demonstrating
less variability and more consistent predictions. The paired t-test for
the augmented model yielded a t-statistic of —3.799 and a p-value
of 0.00017, which is well below the 0.05 significance threshold. This
result highlights a statistically significant difference between the pre-
dicted and actual values, with the augmented model showing a much
stronger alignment with the experimental data (see Fig. 10).

P-Value Analysis: The p-value analysis of both models highlights
the statistical significance of their predictions. For the model without
data augmentation, significant p-values (p < 0.05) are scattered, indicat-
ing occasional alignment with actual values. In contrast, the model with
data augmentation exhibits a concentrated area of significant p-values,
reflecting a more reliable prediction performance. This difference un-
derscores the impact of data augmentation in enhancing the model’s
accuracy and consistency.

4.2.1. Methodological transparency

To evaluate the reliability and robustness of the model’s predic-
tions, we conducted confidence interval (CI) analysis and statistical
significance testing. These methods provide quantitative measures of
prediction uncertainty and ensure the validity of the results.

1. Confidence Interval Analysis: Confidence intervals were calcu-
lated to quantify the uncertainty and reliability of model predictions.
The process involved the following steps:

* Mean and Standard Error Calculation: For each prediction,
the mean (y) and the standard error (SE) were computed. The
standard error was derived using the formula:
SE=-"2

n
where o is the standard deviation of the predictions, and » is the
sample size.
Confidence Interval Estimation: A 95% confidence interval (CI)

was calculated using the t-distribution to account for small sample
sizes:

CI=5+14_gpas - SE

Here, t(;_q245) is the critical ¢-value for the desired confidence
level, and d f represents the degrees of freedom.

Interpretation: The CI provided a range within which the true
prediction values are expected to fall with 95% confidence. This
analysis helped assess the reliability of predictions across various
ECs, ranges, particularly for extreme values.

2. Statistical Significance Testing: Statistical significance test-
ing was conducted to evaluate model performance and ensure the
robustness of results:

» Paired t-Test: A paired t-test was performed between the pre-
dicted values and the experimental logECs, values to assess pre-
dictive accuracy. This test evaluated whether the mean difference
between predicted and actual values was statistically significant.

» Key Metrics: The t-statistic and p-value were reported, with a
p-value below 0.05 considered statistically significant. This in-
dicated that the model’s predictions were unlikely to be due to
random chance.

3. Purpose and Benefit to the Community: These methods were
employed to strengthen the robustness and reliability of model predic-
tions:
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Fig. 10. P-values across various data points for models without (left) and with (right) data augmentation. The shaded regions represent significant areas where p-values are below
the 0.05 significance level (dashed line). The model with data augmentation shows a more consistent and statistically significant alignment of predictions with actual values, as

evidenced by the higher density of p-values below the threshold.

Table 6

Comparison of model performance metrics.
Model RMSE MAE R-squared Pearson

correlation

FNN (Training Set) [22] 0.2906 0.2111 0.9227 -
FNN (Test Set) [22] 0.3732 0.3028 0.8917 -
SVM (Training Set) [22] 0.2787 0.1762 0.9289 -
SVM (Test Set) [22] 0.3204 0.2628 0.9202 -
MLR [69] 0.51 - 0.77 -
MLR [70] 0.43 0.34 - -
Proposed Model (without DA) 0.383646 0.295523 0.878808 0.940181
Proposed Model (with DA) 0.060812 0.024410 0.996432 0.998301

» Quantifying Model Uncertainty: CI analysis provides a way
to report not just point predictions but also the associated un-
certainty. This is particularly valuable for datasets with high
variability, as seen in studies involving ionic liquids.

» Ensuring Robustness: Statistical significance testing validates
the reliability of reported results, serving as a benchmark for
future ML studies.

+ Fostering Transparency: By detailing these methods, we provide
a framework for other researchers to adopt, promoting trans-
parency and reproducibility in ML-based research on ionic liquids.

The use of confidence interval analysis and statistical significance
testing strengthens the robustness and reliability of model predic-
tions. These methods not only validate our results but also offer a
reproducible approach that benefits the broader research community.
For readers seeking more detailed information on confidence interval
analysis and statistical significance testing, we recommend consulting
established resources such as [65,66] for confidence intervals, and [67,
68] for statistical testing methods.

4.3. Model comparison

The proposed model, particularly with the incorporation of data
augmentation, shows a remarkable enhancement in predicting the tox-
icity of ionic liquids compared to earlier models. Without data aug-
mentation, the model achieves an RMSE of 0.38, an MAE of 0.29, an
R-squared value of 0.87, and a Pearson correlation of 0.94. However,
when data augmentation is applied, the model’s performance signifi-
cantly improves, achieving an RMSE of 0.06, an MAE of 0.02, an R-
squared value of 0.99, and a Pearson correlation of 0.99. These results
suggest that the data-augmented model not only surpasses the Feed-
forward Neural Network (FNN) and Support Vector Machine (SVM)
models presented by Wang et al. (2020), but also significantly exceeds
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the Multiple Linear Regression (MLR) models by Sosnowska et al.
(2017) and Wu et al. (2020). The notable decrease in RMSE and MAE,
coupled with the almost perfect R-squared and Pearson correlation
values, underscores the robustness and predictive accuracy of the pro-
posed model, establishing it as a superior tool for the computer-aided
molecular design of environmentally friendly ionic liquids (see Table
6).

4.4. Discussion of top features

The top 20 features identified during the modeling process, as
shown in Fig. 5, provide significant insights into the molecular char-
acteristics influencing toxicity. Among these, the most important de-
scriptors are:

SMR_VSADS: This feature represents the van der Waals surface area
(VSA) contributions weighted by molar refractivity, capturing disper-
sion forces.

fr_ unbrch_alkane: The count of unbranched alkane fragments,
which reflects molecular flexibility.

VSA _EState7: An electrotopological state descriptor summarizing
both electronic and geometric properties.

Dispersion Forces (SMR_VSA5): Molecular regions with high re-
fractivity are associated with strong dispersion interactions. These re-
gions can enhance molecular binding to biological targets, potentially
increasing toxicity.

Fragment-Based Descriptors (fr_unbrch_alkane): Unbranched
alkanes, characterized by reduced steric hindrance, can influence
bioavailability and membrane permeability, impacting how the molecule
interacts with biological systems.

Electrotopological and Surface Area Descriptors (VSA_EState7):
These descriptors highlight regions of significant electronic activity
and molecular reactivity. Such regions often correlate with interactions
with enzymes, such as acetylcholinesterase, directly affecting toxicity.

4.5. Impact of data augmentation on high EC50 values

The observed improvement in model performance for compounds
with high ECs, values following data augmentation can be attributed
to the following factors:

1. Balancing the Dataset Distribution: High ECy, values, often
associated with low-toxicity compounds, are typically under-
represented in toxicity datasets. This imbalance can result in
a model biased toward more common lower ECs, values. Data
augmentation methods, such as random SMILES generation and
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tautomer enumeration, enriched the dataset by introducing di-
verse yet valid chemical representations. This increased repre-
sentation of high EC5, compounds enabled the model to better
capture patterns associated with low-toxicity compounds.

2. Increased Chemical Diversity: Augmentation techniques ex-
panded the dataset with structurally and chemically diverse
samples. This diversity:

+ Highlighted subtle structural features relevant to high ECs,
values that might be underexplored in the original dataset.

» Improved the model’s ability to generalize across sparsely
populated regions of the chemical space, particularly those
corresponding to high ECs, values.

3. Improved Representation of Low-Toxicity Patterns: High
ECs5, values are indicative of low-toxicity compounds, which
may share distinct structural or physicochemical properties
(e.g., high molecular weight, low lipophilicity). Data augmen-
tation generated more examples of these specific patterns, en-
abling the model to:

+ Differentiate low-toxicity compounds from high-toxicity
ones more effectively.

+ Capture features that were underrepresented in the origi-
nal dataset.

4. Mitigation of Overfitting: By introducing variability into the
dataset, data augmentation inherently reduces overfitting. This
forces the model to focus on generalizable features rather than
memorizing specific instances. For high ECs, values, this vari-
ability enhanced the model’s ability to identify underlying trends
and structural characteristics associated with low toxicity.

5. Amplifying Signal for Sparsely Represented Regions: In the
original unaugmented dataset, high ECs, compounds
contributed less to the overall loss function during training
due to their smaller representation. Augmentation amplified the
signal from these sparsely represented regions, ensuring that
the model learned effectively from them, thereby improving
predictive performance.

These factors collectively contributed to the observed improvement
in predictive performance for high ECy, values, reducing bias toward
more common toxicity levels and improving the model’s ability to
generalize across the entire ECg, spectrum.

5. Conclusion

This study presents a cutting-edge meta-ensemble learning frame-
work designed to predict the toxicity of ionic liquids (ILs) with re-
markable accuracy, utilizing molecular descriptors and fingerprints. By
combining the strengths of multiple machine learning models - such as
Random Forest, Support Vector Regression, CatBoost, and Chemception
— with an XGBoost meta-classifier, the framework achieves notable
improvements compared to traditional approaches. Efficiency and pre-
cision are further enhanced through Recursive Feature Elimination for
feature selection and hyperparameter tuning via GridSearchCV.

Data augmentation techniques, including random SMILES gener-
ation, canonical SMILES, and tautomer enumeration, play a pivotal
role in refining model performance. These methods reduce predic-
tion errors and enhance consistency. The framework demonstrates
significant improvements in RMSE, MAE, R2, and Pearson correlation
coefficients over models that do not employ augmentation, highlighting
its robustness and reliability.

Beyond its technical contributions, this research offers a powerful
tool for computer-aided molecular design of environmentally sustain-
able ILs, aligning with the principles of green chemistry. Moreover, it
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provides a reproducible framework for advancing QSAR modeling by
integrating data-driven insights with molecular property prediction.

Future developments could extend this framework by exploring
new data augmentation methods, incorporating experimental valida-
tion, and applying it to broader molecular datasets. Additionally, a
comparison of the performances of the base models can be investigated
to see their strengths separately as well. Such efforts would further es-
tablish its versatility and value in cheminformatics and environmental
sciences.
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