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Abstract

Galilean transformations and Lorentz transformations are part of the curricula in modern physics at the

upper-secondary schools (such as Grade 11, 12, or Grade 13) and in physics undergraduate programs at any

university. However, learning outcomes are different for these courses taught at the upper-secondary schools

and physics undergraduate programs at the universities because the prerequisites are different. Furthermore,

Einstein’s special theory of relativity is related to Lorentz transformations and is part of the physics curricula

taught at upper-secondary schools and undergraduate physics degrees at universities. Moreover, that theory

is based on the framework of the four-dimensional space-time concept and its fibre-absolute time. These

concepts are necessary for a high level of mathematics; therefore, the difficulty in acquiring the desired

outcome knowledge can be different for the students of upper-secondary schools and physics undergraduate

programs at the universities. The need to balance the mathematical skills necessary to understand materials

has increased efforts in designing syllabuses with a gradual development and implementation of modern

physics courses in curricula.

In this paper, I discuss the pedagogical frameworks that can be established in the syllabuses of physics

courses for teaching the topics, such as Galilean and Lorentz transformations and special theory of relativity,

at different levels of secondary school and undergraduate university curricula aiming for a gradual transition

from the secondary school to the careers in science, technology, engineering, and mathematics.

Keywords: Galilean transformations, Lorentz transformations, Special theory of relativity, Space-time, Lorentz in-

variant, Metric tensor
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I. INTRODUCTION

The development of curricula that gradually implement new skills in learning physics is one of

the main focuses of teaching the physical sciences [1]. These curricula aim to develop students’

scientific and critical thinking; additionally, they should strengthen students’ interests and affinities

for scientific reasoning and research [2–5].

Furthermore, the syllabus should include a variety of supportive learning techniques in the class-

room (such as scientific reading materials, data structures, tables and graphs, videos, interactive

discussion, artificial intelligence, virtual and augmented realities, and software) combined with

problem- and project-based learning strategies [3–5].

More importantly, the students should be prepared to identify physical quantities, measure and

identify trends in the user data, utilising data processing tools and graphics [6]. That helps de-

velop students’ problem-solving skills, collaborative and group learning skills, and critical think-

ing, enabling them to become independent. The introduction of modern physics courses in upper-

secondary schools and undergraduate university programs has attracted many students to the phys-

ical sciences courses; however, the need to balance the mathematical skills necessary to gain an

understanding of materials has increased efforts in designing syllabi with a gradual development

and implementation of such courses in curricula.

In our previous work [7, 8], we aimed to develop reading materials on the fundamental con-

cepts of physics, focusing on how different theories were developed from physical observations

and phenomena, with a greater emphasis on examples and problem-solving techniques. The stu-

dents gain firsthand experience of how physics theories are applied to engineering and scientific

problems, primarily aimed at upper-secondary schools and undergraduate students in engineering

and science.
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This study aims to develop in-class materials to balance the mathematical skills necessary to

understand the reading material. In particular, Galilean and Lorentz transformations, including

the special theory of relativity, are an integral part of the science and engineering curriculum;

therefore, the focus is on Galilean and Lorentz transformations and the special theory of relativity.

The objective is to help secondary school students achieve good grades and prepare them for the

challenges they will face during their university studies.

This paper is organised as follows. In Section 2, we discuss Galilean transformations for the co-

ordinates and velocities; besides, we give the formulas of these transformations by introducing the

concept of Cartesian coordinates, Euclidean geometry, and inertial reference frame, S(t, x, y, z),

with components, the absolute time t and relative Cartesian coordinates (x, y, z). The framework

of Sections 2 and 3 can be established in the curricula of the upper-secondary schools for the

physics courses. Moreover, the concept of the velocity vector is introduced. Here, we have also

introduced the concept of a three-dimensional Euclidean geometry interval as an invariant mea-

sure under Galilean transformations and explained that the Newtonian laws remain invariant under

these transformations. Next, we continue with the speed of light under Galilean transformations

and then introduce the Michelson-Morley experiment as proof that Galilean velocity transforma-

tions must be incorrect. That led to the postulation of Einstein’s special theory of relativity and the

concept of space-time as a four-dimensional geometrical object, introduced in Section 3. In Sec-

tion 4, Lorentz transformations are introduced for coordinates and velocities. Lorentz transforma-

tions (Section 4) can be introduced as an advanced-level physics course for the upper-secondary

school students to gradually transition from secondary school to careers in science, technology,

engineering, and mathematics.

Moreover, in Section 5, we describe the special theory of relativity and Lorentz transforma-

tions in the framework of the four-dimensional manifold space-time and its fibre-absolute time.
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Additionally, we introduce the concept of the metric tensor of Minkowski space-time and the sub-

manifold spaces of four-dimensional and covariant vectors. The focus is on establishing a frame-

work for introducing the concepts of the special theory of relativity and Lorentz transformations

suitable for the physics undergraduate curricula of universities, which are essential for describing

relativistic mechanics and explaining Maxwell’s equations as the law of mechanics [9, 10]. Sec-

tion 6 introduces the Lorentz transformation tensor, and Section 7 discusses the conservation laws.

Finally, Section 8 gives the concluding remarks of this study.

II. GALILEAN TRANSFORMATIONS

In Newtonian mechanics, the laws of physics apply the same to all observers in an inertial

reference frame. Additionally, an inertial reference frame is defined in accordance with Newton’s

first law of motion. Moreover, any frame moving with constant velocity relative to an inertial

reference frame is an inertial reference frame.

In this section, Galilean transformations are introduced, and then the speed of light under

Galilean transformations and the Michelson-Morley experiment are discussed, as per the pub-

lished literature [7, 11, 12].

Consider two inertial reference frames S(t, x, y, z) and S ′(t′, x′, y′, z′), as presented in Figure 1.

S ′(t′, x′, y′, z′) frame moves with constant velocity V along the x axis such that initially (at t = 0)

the origins, O and O′, and the axes of the two frames coincide. A space-time vector is defined by

the coordinates (t, r), where t is the time and r is the Cartesian coordinates vector, r = (x, y, z).

Thus, the position of a particle at the point P can be described by the coordinates (t, r), measured

by an observer O at S, and coordinated (t′, r′), measured by another observer O′ at S ′.
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A. Galilean Coordinates Transformation

The Galilean transformation of the space-time coordinates between S and S ′ inertial reference

frames is defined as the following:

t′ = t (1)

x′ = x− V t

y′ = y

z′ = z

Alternatively,

t = t′ (2)

x = x′ + V t

y = y′

z = z′

In Eq. (1) or Eq. (2), (t, x, y, z) represent the space-time coordinates of a particle at time t in the

inertial frame S measured by the observerO and (t′, x′, y′, z′) represent the space-time coordinates

of the same particle in the moving frame S ′ measured by the observer O′ (see also Figure 1).

For an arbitrary direction of V, Eq. (2), representing the transformation from S ′ to S inertial

reference frame (see Figure 2), can be written as

r = r′ + Vt (3)

where

r = xi + yj + zk (4)
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FIG. 1: O(t, x, y, z) and O′(t′, x′, y′, z′) represent the origins of two inertial reference frames, S and S′. S′

frame moves with constant velocity V along the x axis such that initially (at t = 0) the origins and the axes

of the two frames coincide. P represents the position of some particle at an instant.

r′ = x′i + y′j + z′k

V = Vxi + Vyj + Vzk

Here, i, j and k are orthogonal unit vectors along x, y, and z axes, respectively, such that:

i · i = j · j = k · k = 1 (5)

i · j = i · k = j · k = 0

(Note that here it is assumed that always the axes of the inertial reference frames S and S ′ are

aligned, and thus the same unit vectors i, j, and k are taken for both S and S ′; otherwise, a relative

rotation motion could have been introduced between the reference frames, which would have

gained an acceleration, and thus S and S ′ would have been no longer inertial reference frames.)

The inverse transformations (that is, the transformation from S to S ′ inertial reference frame)

are obtained by swapping the terms involving (′) with these without (′) and changing the sign of

V to −V:

r′ = r−Vt (6)
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FIG. 2: O(t, x, y, z) and O′(t′, x′, y′, z′) represent the origins of two inertial reference frames, S and S′. S′

frame moves with constant velocity V along any arbitrary direction such that initially (at t = 0) the origins

and the axes of the two frames coincide. P represents the position of some particle at an instant.

Note that Eq. (3) and Eq. (6) can simply be obtained from the geometry (see also Figure 1 and

Figure 2) using the rule of addition or subtraction of vectors in three-dimensions [7].

B. Galilean Velocity Transformation

Next, the transformations of particle velocity components between the two inertial frames are

derived. The derivative for the time t′ in Eq. (1) gives:

dx′

dt′
=
dx

dt′
− d(V t)

dt′
(7)

dy′

dt′
=
dy

dt′

dz′

dt′
=
dz

dt′

Since dt′ = dt, we obtain

v′x = vx − V (8)

v′y = vy

v′z = vz
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where the velocities vi (in S) and v′i (in S ′), for i = x, y, z, are defined as

vx =
dx

dt
, vy =

dy

dt
, vz =

dz

dt
(9)

v′x =
dx′

dt′
, v′y =

dy′

dt′
, v′z =

dz′

dt′

and V = (V, 0, 0) is assumed (see also Figure 1). Eq. (9) in vectorial form can be written as

v =
dr

dt
(10)

v′ =
dr′

dt′

In general, for any direction of the constant velocity V, it can written that

v′ = v −V (11)

where

v = vxi + vyj + vzk (12)

v′ = v′xi + v′yj + v′zk

Similarly, the inverse transformation (that is, the transformation from S ′ to S inertial reference

frame) is

vx = v′x + V (13)

vy = v′y

vz = v′z

For an arbitrary direction of V, we have

v = v′ + V (14)

Eq. (11) and Eq. (14) are often used for different observations, and they are consistent with

Newtonian mechanics [7, 11].
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According to Eq. (1) or Eq. (2), the time measured by an observer in any two inertial reference

frames, S and S ′, is the same (i.e., t = t′). That is, the time is absolute; hence, the time is one of

the invariant quantities in the space-time. In addition, from Eq. (1), we obtain:

dx′ = dx (15)

dy′ = dy

dz′ = dz

Therefore, we get

(ds)2 ≡ (dx)2 + (dy)2 + (dz)2 (16)

= (ds′)2 ≡ (dx′)2 + (dy′)2 + (dz′)2

where (ds)2 is the square of an infinitesimal distance in Euclidean space. Eq. (16) indicates that

(ds)2 is an invariant measure; that is, it does not depend on the observer’s inertial reference frame.

On the other hand, any velocity vector obeys the transformations given by either Eq. (8) or

Eq. (13), and hence it is a relative measure (that is, it depends on the observer’s inertial reference

frame). That is the view of Newtonian mechanics.

Under Galilean transformations, the second law of Newton, relating the applied force to the rate

of change of the momentum, can be written for an observer O in S frame as [7]:

F =
dp

dt
(17)

and for an observer O′ in S ′ frame as

F′ =
dp′

dt′
=
dp

dt
= F (18)

because t = t′. Therefore, the force F remains invariant under Galilean transformations.

Maxwell’s equations of electromagnetism introduced a new universal constant, namely the

speed of light c (c = 3.00 × 108 m/s). That is inconsistent with Newtonian mechanics, which
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shows that velocity is a relative measure; its measured value depends on the observer’s reference

frame. This inconsistency suggests that either Newtonian or Maxwell equations should be mod-

ified. Albert Einstein solved the paradox in 1905 with his special theory of relativity(STR). He

concluded that Galilean transformations are wrong and time is not absolute [13]. At that time,

STR was necessary to solve the contradictions between the Newtonian and Maxwell equations,

which were interpreted as mechanical laws.

C. The Speed of Light Under Galilean Velocity Transformations

Until the late 1800s, the value of the speed of light was a special measure relative to a fixed

frame connected to ether, which was the medium through which the light signals were assumed

to propagate. The frame connected to the ether was also called absolute ether frame. In these

conditions, using the Galilean transformations, the speed of light can be lower or greater than c;

that is, it is not an invariant measure, but it depends on the observer’s reference frame. For exam-

ple, consider the situation in Figure 3, as described in Ref. [11]. S(t, x, y, z) and S ′(t′, x′, y′, z′)

represent two inertial reference frames. S ′ moves with a constant velocity V along the x axis,

and frame S is at rest (the so-called absolute ether frame). Initially (at t = 0), the two frames’

origins and axes coincide. A light signal is sent from a source of light fixed at S ′ towards either

the positive or negative x axis. v represents the speed of light for the absolute ether frame, S, and

c represents the speed of light in the moving frame S ′.

Using the Galilean velocity transformations, we will obtain:

v = c− V (19)

if S ′ approaches S frame (or equivalently, towards the negative x axis), and

v = c+ V (20)
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If the frame S ′ moves away from the S frame (or equivalently, towards the positive x axis). Note

that Eq. (19) and Eq. (20) are obtained simply by projecting Eq. (14) along the x-axis for the two

cases of the direction of the vector V shown in Figure 3.

FIG. 3: S(t, x, y, z) and S′(t′, x′, y′, z′) represent two inertial reference frames. S′ is a moving frame with

constant velocity V along the x axis, and S is a frame at rest, the so-called absolute ether frame. Initially

(at t = 0), the origins and the axes of the two frames coincide. A light signal is sent from a source of light

fixed at S′ towards either the positive or negative x axis. v represents the speed of light in the absolute ether

frame S using the Galilean transformations, and c represents the speed of light in the moving frame S′.

Furthermore, when v, which represents the velocity of light in the absolute ether frame S, is

perpendicular to the relative velocity V of the absolute ether frame and moving frame, as shown

in Figure 4, we will obtain:

v =
√
c2 − V 2 (21)

That indicates that the speed of light is not an invariant measure. Its measured value depends on

the observer’s reference frame. Later, Maxwell, when deriving the electromagnetic equations [8],

showed that the speed of light is a universal constant and that the electromagnetic wave does not

need a medium to propagate; that is, it can also spread in an absolute vacuum.
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FIG. 4: Illustration of the case when v, representing the velocity of light with respect to the absolute ether

frame, is perpendicular to the relative velocity V of the absolute ether frame and moving frame.

D. The Speed of Light Under Michelson-Morley Experiment

Eq. (19) and Eq. (20) point out that small changes could exist in the measurement of the speed

of light from what is predicted by Maxwell’s equations.

The first experiment used to verify the existence of the ether medium is the Michelson-Morley

experiment. A setup of that experiment is shown in Figure 5, as in Ref. [11]. M0, M1 and M2 are

three mirrors, where M0 forms an angle of 45◦ with horizontal direction. Let S be the absolute

frame of ether and S ′ the frame connected to the Earth. Suppose that the orientation of L2 is such

that Earth’s velocity has an opposite direction to the positive x axis. Then, using Eq. (19) and

Eq. (20), the speed of light along y-axis with respect to Earth (S ′ frame) for the incident light

wave is:

v = c+ V (22)

and for the reflected light wave is

v = c− V (23)

Note that in Eq. (22) and Eq. (23), c denotes the speed of light with respect to the absolute ether

frame (S) and v the speed of light with respect to Earth (S ′).
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The two reflected waves from M1 and M2 mirrors superimpose and an interference pattern is

observed, using an interferometer at the position of the telescope in Figure 5, made up of dark and

bright fringes [11]. First, the time for the light travelling the path L2 is calculated as:

t1 =
L2

c+ V
+

L2

c− V
=

2cL2

c2 − V 2
(24)

On the other hand, the time taken to travel the path L1, which is perpendicular to the direction of

the velocity V, is given as

t2 =
2L1√
c2 − V 2

(25)

Therefore, Eq. (22) and Eq. (23) indicate that there is a time shift between the light waves following

the paths L1 and L2 when they arrive at the telescope, given as

δt = t1 − t2 =
2cL2

c2 − V 2
− 2L1√

c2 − V 2
(26)

=
2L2

c

(
1− V 2

c2

) − 2L1

c

√
1− V 2

c2

Because often V/c� 1, then the following approximation can be used from a Taylor expansion:

1√
1− V 2

c2

≈ 1 +
V 2

2c2
(27)

1

1− V 2

c2

≈ 1 +
V 2

c2

Eq. (26) can then be written as

δt =
2L2

c

(
1 +

V 2

c2

)
− 2L1

c

(
1 +

V 2

2c2

)
(28)

For L1 = L2 = L, we obtain

δt =
LV 2

c3
(29)
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The difference in the travelling time δt will affect the interference pattern as seen from the tele-

scope of the two reflected lights coming along the paths L1 and L2, respectively. If we rotate the

interferometer by 90◦, then the direction of the velocity of Earth rotates with 90◦ such that V is

along L1 path. In such a case, the light speeds of the incident and reflected along L1 will change

according to Eq. (22) and Eq. (23), and hence the paths switch the roles, causing the time shift to

double. Thus,

∆t = 2δt = 2
LV 2

c3
(30)

The time shift corresponds to a path shift given as

∆d = c∆t = 2
LV 2

c2
(31)

Furthermore, a shift in the path travelled by the two light waves with λ (wavelength) is equivalent

to a shift with one fringe on the interference pattern; therefore, ∆d will cause the interference

pattern to slightly shift by

shift =
∆d

λ
=

2LV 2

λc2
(32)

However, up to date, no one has managed to observe that shift in the interference pattern, and

many have tried [11]. That suggests that the Galilean velocity transformation equations are incor-

rect. Hence, the argument that the speed of light is invariant remains, which was initially derived

by Maxwell.

Albert Einstein, in 1905, decided that Maxwell’s equations are correct and Newtonian me-

chanics, and hence Galilean transformations are incorrect [13]. Furthermore, he introduced the

special theory of relativity, which Einstein considered necessary at that time to explain electro-

magnetism. More about the interpretation of Maxwell’s equations as mechanical laws can be

found in Refs. [9, 10].
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FIG. 5: Michelson-Morley experiment setup.

III. POSTULATES OF SPECIAL THEORY OF RELATIVITY

In this section, Einstein’s special theory of relativity is introduced using the framework of Carte-

sian coordinates and space-time geometry [14]. Einstein’s postulates of the special theory of rela-

tivity are also introduced and discussed [11–13, 15–18].

A. Postulates of Einstein’s Special Theory of Relativity

Two postulates given by Einstein, known as the special theory of relativity, are:

1. The laws of physics are equivalent in all inertial reference frames.

As an experiment, consider the free fall of a ball from the ceiling of a train moving with

constant velocity v to the right, shown in Figure 6. Consider a reference frame S(t, x, y, z)

connected to the observer at rest in a laboratory, and S ′(t′, x′, y′, z′) connected to an observer

sitting in the train, which moves with constant speed v. L′ denotes the path of the free fall

measured by the observer at the frame S ′ at rest relative to the train, and L is the path of the

ball measured by the observer at the frame S. Since the train moves with constant velocity,

both S and S ′ are inertial reference frames, and hence the laws of physics are the same

in both frames. However, the measurements of the two observers are different. For the
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observer at S ′ at rest relative to the moving train, the motion of the ball represents a free

fall. For the observer at frame S, the ball moves to the right with constant speed v along a

parabolic path.

FIG. 6: A ball undertakes a free fall from the ceiling of a train moving with constant velocity v to the right.

Consider the reference frame S(t, x, y, z) connected to the object at rest in a laboratory, and S′(t′, x′, y′, z′)

connected to the train moving with constant speed v. L′ denotes the path of the free fall measured by an

observer at the frame S′ at rest relative to the train, and L is the path of the ball measured by an observer at

the frame S.

2. The speed of light is the same in all inertial reference frames, i.e., the speed of light in

absolute vacuum is a universal constant, c = 3.00× 108 m/s.

Consider the experiment of a light signal sent from the point A to B, separated by a distance

l′ = cτ , where c is the speed of light and τ is the time measured by the stationary clock (the

so-called proper time). The reference frame S ′(t′, x′, y′, z′) is connected to an observer at

rest relative to the observer moving with a significantly large constant speed v, S(t, x, y, z).

The axes of the two reference frames coincide. d = vt denotes the distance travelled by

the observer in S, t is the time measured by the running clock (the so-called laboratory

time), and l = ct is the distance between A and B measured by the running clock. Using

17



Pythagoras theorem: (ct)2 − (vt)2 = (cτ)2, or t = τ/
√

1− v2/c2 and ct > cτ (l > l′).

This experiment demonstrates that although the speed of light in a vacuum is constant (i.e.,

c), the time measured by two clocks (one at rest and the other moving with constant velocity)

for the signal to travel between the same points is different because the measured distance

between these two points depends on the reference frame. That is a consequence of the

so-called time dilation and length contraction, which will be discussed in the following;

however,

l′

τ
=
l

t
= c (33)

Eq. (33) indicates that the time dilation factor should equal the length contraction factor.

FIG. 7: A light signal is sent from A to B, separated by a distance cτ , where c is the speed of light and τ is

the time measured by the stationary clock (the so-called proper time). The reference frame S′(t′, x′, y′, z′)

is connected to an observer at rest relative to the observer moving with a significantly large constant speed

v, S(t, x, y, z). The axes of the two reference frames coincide. vt denotes the distance travelled by the

observer in S, and t is the time measured by the running clock (the so-called laboratory time). Using

Pythagoras theorem: (ct)2 − (vt)2 = (cτ)2, or t = τ/
√
1− v2/c2 and ct > cτ .
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B. Space-time

In the special theory of relativity, both time and space are unified in a single entity known as the

space-time. That replaces Euclidean geometry of Newtonian mechanics, and hence, the space-time

is the framework for describing the laws of physics in STR. Every observer can measure the space

and time coordinates of the events; however, all inertial observers measure a unique separation of

the events. That is:

(ds)2 = c2 (dt)2 − (dr)2 (34)

where c2 (dt)2 is the square of the time interval and (dr)2 = (dx)2 + (dy)2 + (dz)2 is the square

of the space interval between any two points in the space-time with an infinitesimal separation.

A point in the space-time is characterised by four coordinates, (ct, x, y, z), namely the time-like

coordinate ct and the space coordinates r = (x, y, z). That point is also called event. The space-

time, defined by Eq. (34), is also called Minkowski space.

Eq. (34) can also be written as:

(ds)2 = c2 (dt)2

(
1− v2

c2

)
(35)

Eq. (35) indicates that (ds)2 = 0 for v = c. That interval is called light-like interval. Further-

more, (ds)2 > 0 for v < c, which is called time-like interval. Moreover, (ds)2 < 0 for speeds of

events greater than the speed of light v > c, which is called space-like interval.

Therefore, for any inertial reference frame, the objects travelling on the light-like paths (see also

Figure 8) move with the speed of light and are called light-like objects, which have a rest mass

equal to zero. The objects moving along the time-like paths have a speed less than the speed of

light and are called tardyons (which are particles with non-zero mass); while those objects moving

along the space-like paths have a speed higher than the speed of light and are called tachyons

(which are hypothetical particles that travel backward in time, not discovered yet).

19



FIG. 8: The cone of light.

C. Invariant Space-time Interval

Note that all the inertial observers measure the same interval ds between any two infinitesimally

separated events, and hence the space-time interval ds is an invariant measure (that is, its value

does not depend on the inertial reference frame). Thus, if S(t, x, y, z) and S ′(t′, x′, y′, z′) are two

inertial reference frames, then we will have

(ds)2 = (ds′)
2 (36)

where

(ds)2 = c2 (dt)2 −
(
(dx)2 + (dy)2 + (dz)2) (37)

(ds′)
2

= c2 (dt′)
2 −

(
(dx′)

2
+ (dy′)

2
+ (dz′)

2
)

For Eq. (36) to hold, when one goes from one inertial frame S to another inertial frame S ′, trans-

formations of the coordinates between the two frames must involve the relative velocity between

the two frames in both space and time parts. Therefore, t is no longer an invariant measure in

two inertial frames (i.e., t 6= t′). This indicates that the relative partition of space-time into space

and time components will be different for different inertial observers, depending on their relative
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velocity. In other words, the time measured in the laboratory frame (inertial frame at rest) is dif-

ferent from the time measured in a moving inertial reference frame with constant speed v relative

to the inertial frame at rest, and hence cdt 6= cdt′. Furthermore, if we denote the length of any

geometrical elementary object in three-dimensional space as

(dl)2 = (dx)2 + (dy)2 + (dz)2 (in S) (38)

(dl′)
2

= (dx′)
2

+ (dy′)
2

+ (dz′)
2 (in S ′)

which gives the distances between any two infinitesimally separated points in three-dimensional

space, determined in Euclidean geometry, and measured in S and S ′. Then, dl 6= dl′.

D. Time Dilation

Two types of clocks can be introduced: those at rest and those moving with constant speed v.

The time measured by the clocks at rest is called proper time, and the time measured by all other

inertial observer clocks is called laboratory time.

Consider the experiment with a light signal travelling from A to B, as shown in Figure 9. We

also consider the reference frame S(t, x, y, z) at rest (laboratory inertial frame) and S ′(t′, x′, y′, z′)

moving with constant velocity v with the object where the events are observed along the y axis

relative to S. The axes of the two reference frames coincide. As the object at rest relative to the

inertial frame, S ′, moves to the right, the light signal follows the path shown in blue, as depicted

in Figure 9. Here, dt equals the time interval measured by the observer’s clock at reference frame

S, as the light signal travels the distance AB. For the observer at S, the measured displacement in

space between these two events is dx = 0, dy = vdt, and dz = l, where l is the distance between

A and B measured along the direction of the z axis (see also Figure 9). The observer’s clock at the

reference frame S ′ measures a time interval dt′ between these two events, and the displacements
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in space measured by this observer are dx′ = dy′ = 0, and dz′ = l. From Eq. (37), we can write:

(ds′)
2

= c2 (dt′)
2 − l2 (39)

(ds)2 = c2 (dt)2 − l2 − (vdt)2

Because of the invariance of the space-time intervals (see Eq. (36)):

c2 (dt′)
2 − l2 = c2 (dt)2 − l2 − (vdt)2 (40)

or

dt =
dt′√

1− v2

c2

(41)

Eq. (41) gives the relationship between the time interval dt, measured by the clock of the ob-

server at S, and the interval of time dt′, measured by the clock of the observer at the moving frame

S ′ with constant speed v relative to S. Here, dt is called the laboratory time; furthermore, the

clock of the observer at S ′ is at rest relative to the moving object where the two events occur, and

thus dt′ is the so-called proper time interval dτ .

Eq. (41) points out that dt > dt′ because the factor 1/
√

1− v2/c2 > 1 (since v < c). This is

called time dilation; that is, the observers running faster through space run slower through time

(the clock of the observer connected at S ′, who is running through space, runs slower through time

dt > dt′).

E. Light Cone

Because the space-time interval ds between any two infinitesimally separated events is an in-

variant measure in Minkowski space, often the space-time can be imagined to be divided into four

regions, as shown in Figure 8 with respect to an arbitrary event O at some time tO located at the
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FIG. 9: A light signal is traveling from A to B. We consider the reference frame S(t, x, y, z) at rest

(laboratory inertial frame) and S′(t′, x′, y′, z′) moving with constant velocity v with the object where the

events are observed along the y axis. The axes of the two reference frames coincide.

origin (i.e., t = x = y = z = 0). For any event B in the lower cone occurring in the past at the

time tB, we have

(dsOB)2 > 0 (42)

Furthermore, if tB < tA in some inertial frame, then tB < tA in any other chosen inertial frame.

That region is called the past region. It is also possible to choose an inertial frame such that

(dsOB)2 > 0, where B has the same space coordinates as A.

The region C (see also Figure 8) is called the future region of events. Any event occurring at

time tC > tA at an inertial frame will have the same order of occurrence in any other chosen

inertial frame. Again, it is also possible to choose an inertial frame such that (dsOC)2 > 0, where

C has the same space coordinates as the origin A.

On the other hand, if (dsOD)2 < 0, then we have the elsewhere region. Here, there exist inertial

frames for which the order of the occurrence of the events at tA and tD can be reversed (i.e., either

tA > tD or tD > tA) or even made equal (i.e., tA = tD) but at different space coordinates.

The fourth region is the so-called light cone, which separates the past-future and elsewhere

regions. In this region, (ds)2 = 0, and hence it characterises the space-time events moving with
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the speed of light; that is, the light emitted by these points reaches the event A, and vice versa, the

light emitted from event A can reach the space-time points of the light cone.

F. Length Contraction

Consider a spaceship moving from the star A to the star B with constant speed v, as shown in

Figure 10. Let S and S ′ be two inertial frame observers, respectively, at a laboratory on Earth and

the spaceship. Furthermore, we consider two clocks connected to these two observers measuring

the time interval for each observer between any two events in space-time. We consider an event A

occurring when the spaceship is at the starA and an eventB occurring when the spaceship reaches

the star B.

The observer at rest on Earth, who is also at rest relative to the stars, measures the so-called

proper distance between the stars, Lp. Furthermore, the clock of the observer at rest on Earth (at

S) measures the time interval ∆t that the spaceship needs to complete the trip:

∆t =
Lp
v

(43)

On the other hand, the observer in the spaceship (at S ′) is at rest relative to the spaceship where

the events occur; therefore, its clock measures the proper interval of time, ∆τ , between these two

events. Since this observer (at rest relative to the spaceship) moves relative to Earth with speed v,

the distance, L, measured between the stars is

L = v∆τ (44)

Here, Lp is the distance between the two events measured by the clock of the observer inertial

frame, S, at rest on Earth and at rest relative to the stars A and B, and L is the distance between

the two events measured by the clock of observer inertial frame S ′ on a spaceship who is moving

relative to the Earth and the stars.
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Combining Eq. (43) and Eq. (44), we obtain

L

v
= ∆τ = ∆t

√
1− v2

c2
=
Lp
v

√
1− v2

c2
(45)

or

L = Lp

√
1− v2

c2
(46)

From Eq. (46), we obtain

Lp > L (47)

because

√
1− v2

c2
< 1. The relationship given by Eq. (46) is called length contraction effect:

When the observer is at rest relative to the object, then the object has a proper

length Lp, and when the observer moves relative to the object with speed v in a direc-

tion parallel to its length, then the observer measures a shorter length of the object,

L. Furthermore, no length contraction occurs in the directions perpendicular to the

velocity of v.

FIG. 10: The spaceship moving with constant velocity v along the direction that measures the distance from

a star A to another star B.
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G. Relativistic Momentum

Basic units of measurement in Physics are length, time, and mass. We have seen that length and

time are relative measures dependent on the inertial reference frame. In analogy with that, in the

special theory of relativity, the mass is also considered relativistic, defined as [11]

M =
m√

1− v2

c2

(48)

wherem is the rest mass of a particle (or the mass measured in a stationary inertial reference frame

in which the particle is at rest), M is the mass of that particle at an inertial reference frame relative

to which the particle is moving with a constant speed v. Note that since v < c, then M > m.

Then, the relativistic three-dimensional momentum of a particle moving with constant velocity

v and rest mass m is defined as

P = Mv =
mv√
1− v2

c2

(49)

≡ p√
1− v2

c2

Note that P preserves the conservation law of the total momentum in a system of two particles

that collide; however, p = mv is not conserved during the collision or for an isolated system of

relativistic particles.

The relativistic three-dimensional force can also be defined as

F =
dP

dt
(50)
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H. Mass Energy Equivalence Principle

1. Relativistic Work

We will start using the definition of the relativistic force as in Eq. (50) to calculate the work

done on a particle by that force:

W =

x2∫
x1

F dx =

x2∫
x1

dP

dt
dx (51)

Here, we have assumed that the force is acting along the x-axis, and P is the relativistic momen-

tum. Therefore,

dP

dt
=

d

dt

 mv√
1− v2

c2

 (52)

=

1

γ
m
dv

dt
−mvγ

(
− v
c2

dv

dt

)
1− v2

c2

= γm
dv

dt
+ γ3β2m

dv

dt

= mγ
dv

dt

(
1 + γ2β2

)
= γ3m

dv

dt

where γ = 1/
√

1− v2/c2.

Substituting Eq. (52) into Eq. (51), we obtain:

W =

v∫
0

γ3mv dv (53)

assuming that the particle accelerates from speed 0 to some speed v < c. To integrate, we write

γ3 = (1/x)3/2, where x ≡ 1 − v2/c2 = 1/γ2. Then, the following change on the variable of

integration takes place:

v dv = −c
2

2
d

(
1− v2

c2

)
= −c

2

2
dx (54)
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With these changes, Eq. (53) becomes

W = −mc
2

2

1/γ2∫
1

dx

x3/2
(55)

Integrating Eq. (55), we get

W =
mc2√
1− v2

c2

−mc2 (56)

Based on the work-kinetic energy theorem, work done by the force equals the change on the kinetic

energy ∆K:

∆K = Kf −Ki (57)

2. Relativistic Kinetic Energy

Since we assumed that the initial velocity of the particle is zero, then Ki = 0, and hence

∆K = Kf ≡ K. Here, K is the relativistic kinetic energy, which becomes

K =
mc2√
1− v2

c2

−mc2 = Mc2 −mc2 (58)

Note that Eq. (58) is proved by the experimental results, in particular, high-energy particle physics.

In Figure 11, the scaled relativistic and kinetic energy K/mc2 is shown versus scaled velocity

v/c. Additionally, the non-relativistic kinetic energy (K = mv2/2) is also displayed in the plot.

For small values of the particle’s speed relative to the speed of light, both relativistic and non-

relativistic kinetic energy agree. That can also be shown analytically, taking the limit when v � c

in Eq. (58). In particular, for v � c, or equivalently v/c� 1, we have

γ =
1√

1− v2

c2

≈ 1 +
v2

2c2
(59)
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Substituting that expression into Eq. (145), we obtain

K =
mv2

2
(60)

which is the non-relativistic expression of the kinetic energy. That agreement is also shown graph-

ically in the inset plot in Figure 11.

FIG. 11: The relativistic kinetic energyK/mc2 versus v/c for the relativistic and non-relativistic mechanics.

3. Rest Energy and Relativistic Total Energy

In Eq. (58), the term mc2 (which is a constant term) is the so-called rest energy, E0:

E0 = mc2 (61)

By definition, the sum of the rest energy with kinetic energy gives the total relativistic energy

of the particle:

E = E0 +K =
mc2√
1− v2

c2

= Mc2 (62)

Eq. (62) is known as Einstein’s mass-energy equivalence for which he has become famous.

Besides, the relationship in Eq. (62) indicates that mass is a form of energy, and c2 is a constant
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used to convert the mass into units of energy. Since the factor c2 is quite a large number:

c2 = 9.0× 1016 m2/s2 (63)

Then, just a small mass can represent a huge amount of energy, as is often the case in high-energy

particle physics.

Taking the square of the three-dimensional relativistic momentum and multiplying by c2, we get

P 2c2 =
v2

c2

m2c4

1− v2

c2

(64)

= −
(

1− v2

c2

)
m2c4

1− v2

c2

+
m2c4

1− v2

c2

= −m2c4 + E2

which can be re-arranged as

E2 = P 2c2 +m2c4 (65)

Thus, for a particle at rest, that is P = 0, then E = E0 = mc2. Here, E represents the total energy

of a particle. Eq. (65) indicates that even when a particle is at rest relative to some reference frame,

it possesses energy, which is the rest energy E0.

Using Eq. (62) and Eq. (65), often the relativistic kinetic energy is also written as:

K = E −mc2 =
√
P 2c2 +m2c4 −mc2 (66)

Note that the rest mass m does not depend on the reference frame; thus, from Eq. (65) the

quantityE2−P 2c2 is an invariant measure; that is, it is invariant under the Lorentz transformations.

For photons having the rest mass equal to zero, m = 0, then from Eq. (65), we obtain

E = Pc (67)
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To develop the equivalence of mass and energy formula, given by Eq. (62), Einstein thought

about the following experiment, which is also described in Ref. [11].

Suppose a box of mass M and length L at rest at t = 0, as shown in Figure 12. A light signal is

sent from the left side of the box towards the right side of the box along the x axis. Let E be the

energy of the light signal, then using Eq. (153), the momentum of the light pulse is

P =
E

c
(68)

which is along the positive x axis. According to the conservation law of momentum, the box will

gain the same momentum but in the opposite direction. Therefore, the box recoils, as indicated in

Figure 12. The speed of the box is

v =
P

M
=

E

Mc
(69)

Since the box is big, then v � c. The time needed for the light signal to strike the right end of the

box is:

∆t =
L

c
(70)

During that time, the box moves to the left by a small distance ∆x:

∆x = v∆t =
EL

Mc2
(71)

When the light strikes the right end of the box, it transfers momentum P to the box, which is equal

in magnitude but opposite in direction to the initial momentum, and hence the box stops moving.

The box moves to the left by an amount ∆x; thus, the centre of mass of the box shifts to the left

by the same amount, ∆x. However, the box-light pulse system is isolated, and hence the resultant

force is zero; therefore, the centre of mass of the entire system must not have moved. To explain

this, we must assume that light also carries a mass, let us say an effective mass M ′. Thus, for the
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centre of mass of the entire system to remain fixed, we should write that

M ′L = M∆x (72)

or

M ′L = M
EL

Mc2
(73)

From here, the effective mass of the light signal is

M ′ =
E

c2
(74)

or

E = M ′c2 (75)

From that experiment, Einstein concluded that if a particular body gives off the energy E in the

form of radiation, its mass reduces by E/c2.

FIG. 12: Illustration of the light signal emitted at the left end of the box towards the right end of the box.

I. Consequences of Special Theory of Relativity

Consequences of the STR include [11, 16]:

1. In every inertial reference frame, the events in space-time are characterised by a four-

dimensional vector (ct, x, y, z), as shown in Figure 13. That is equivalent to creating a
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FIG. 13: An inertial reference frame observer in STR.

grid in three-dimensional space, where the intersections represent the spatial coordinates

(x, y, z) [11]. Then, at every intersection grid point, synchronised clocks are set up to

measure the time t. The synchronisation of the clocks can be done as follows. An ob-

server at the origin at t = 0 and x = y = z = 0 measures the time using a master clock

(shown in blue in Figure 13). This observer sends a light signal at a grid point at a distance

r =
√
x2 + y2 + z2, which takes t = r/c time to reach that point, then the clock at this

position denotes t = r/c when the master clock is at t = 0, assuming that the speed of light

is the same in all directions.

2. Not all the inertial reference frames are equivalent. Only the inertial reference frames at rest

relative to each other are equivalent. Therefore, not all the inertial reference frames use the

same grid of points and clocks.

3. Not all events are separated in space-time uniquely in all inertial reference frames as opposed

to Newtonian mechanics. For example, in Newtonian mechanics, time and spatial distance

are absolute. On the other hand, in relativistic mechanics, there is no absolute time and

length. Indeed, the interval of time between any two events measured by the observer’s

clock at rest in an inertial reference frame is not the same as the time interval of the same
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events measured by the observer’s clock in an inertial reference frame moving relative to

the frame at rest. The same holds for the length of the distance between any two events in

space-time.

4. It is a consequence of the relativistic mechanics that two events that are simultaneous in an

inertial reference frame may not be so in all other inertial reference frames. For example,

consider the experiment shown in Figure 14. Two light sources are located at A and B,

sending light towards each other. Consider two observers, one at the fixed laboratory inertial

frame (location O) and the other at rest in a moving train with speed v (location O′). For the

observer at O, the light signals sent from A and B will reach O simultaneously. However,

the observer at O′, as the train moves towards B with speed v, is approaching point B and

moves away from the source at pointA; hence the observer atO′ will see first the light signal

sent by the light source at B, then the light signal sent by the light source at A. Therefore,

for the observer at O′, these two events are not simultaneous.

FIG. 14: Illustration of non-simultaneous events in STR.

5. In relativistic mechanics, there is no inertial reference frame that would be preferred. That

is, every inertial reference frame can be employed to describe the laws of physics. In other

words, the laws of physics will have the same form in every inertial reference frame; hence,

the laws are the same for all observers moving at a uniform speed. For instance, Newton’s

second law in the frame S has the form F = ma, which will have the same form F ′ = ma′
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in another frame S ′ that is moving at a uniform speed v relative to S. The relativity of time

and space allows Newtonian and Maxwell mechanics to be the same for all observers in an

inertial reference frame.

IV. LORENTZ TRANSFORMATIONS

In this section, we will introduce the Lorentz transformations in relativistic mechanics, as also

discussed in Refs. [11, 12, 15, 16]. Lorentz velocity transformations using Cartesian coordinates,

for the general case, are derived in this study.

A. Lorentz Transformations of Special Theory of Relativity

The Lorentz transformations preserve the invariant measure (ds)2, representing the interval be-

tween two events in the space-time of the special theory of relativity.

The Lorentz transformations are linear with respect to the coordinates. Furthermore, these

transformations converge to Galilean transformations in the limit when v/c → 0. Often in the

literature, the following notations are introduced:

β =
v

c
(76)

γ =
1√

1− β2

Consider S(t, x, y, z) and S ′(t′, x′, y′, z′) represent two inertial reference frames (see Figure 15).

S ′ is the moving frame with constant velocity V = (v, 0, 0) along the x axis and S is at rest. Ini-

tially (at t = 0), the origins and the axes of the two frames coincide. A and B are two events

occurring at different spatial and temporal locations in space-time. A is the origin of S; therefore,

initially at t = 0, the event A has the space-time coordinates (0, 0, 0, 0), and the event B, occur-

ring at some latter time, has the space-time coordinates (ct, x, 0, 0) and (ct′, x′, 0, 0), respectively,
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relative to S and S ′.

For an observer at S, the x coordinate of the event B relative to origin of S is given as

x = LOO′ + L
(p)
O′B (77)

In Eq. (77), LOO′ represents the distance travelled by the observer at rest in S ′ during the time t

measured by the observer’s clock at rest in S. Therefore, the observer at rest in S measures the

distance LOO′ = vt. Using the time dilation principle, t = γt′, and we can write

LOO′ = γvt′ (78)

where t′ is the time measured by the observer’s clock at rest in S ′.

To measure the distanceL(p)
O′B, two eventsO′ andB are considered, whereO′, initially, coincides

with the origin of S ′, which is the moving inertial reference frame. For the observer at rest in S,

moving relative to O′ and B, the distance between the events B and O′ is the proper length, L(p)
O′B.

On the other hand, for the observer at rest in S ′, moving relative to S, the length measurement is

LO′B = x′. Using the length contraction principle:

L
(p)
O′B = γLO′B = γx′ (79)

Substituting Eq. (78) and Eq. (80) into Eq. (77), we obtain:

x = γ (x′ + vt′) (80)

which is often also found in the form

x = γ (x′ + βct′) (81)

because βc = v.

Consider again two inertial reference frames S(t, x, y, z) and S ′(t′, x′, y′, z′). S ′ is the moving

frame with constant velocity V = (v, 0, 0) along the x axis and S is at rest. Initially (at t = 0), the
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origins and the axes of the two frames coincide (event O). Suppose that at t = 0 a light signal is

sent fromB (eventB) along the x axis toward the originO of the inertial frame at rest S. The event

B has the space-time coordinates (ct, x, 0, 0) relative to S, and it has the coordinates (ct′, x′, 0, 0)

relative to S ′.

During the time interval t measured by the observer’s clock at rest in S, the light signal sent

from B meets the observer at rest in O′ (event O′). During that time, the observer at rest in S ′

has travelled with speed v < c a shorter distance relative to the distance travelled by the light sent

from B. Therefore,

ct = L
(p)
OO′ + LBO′ (82)

where ct is the distance between the events O and B. LBO′ is the distance travelled by the light

signal between the events B and O′ measured by the observer at rest in S:

LBO′ = ct′ = γct (83)

where t′ is time measured by the moving clock in S ′, and t is the time measured by the observer’s

clock at rest in S; that is, t is the proper time. Using the time dilation principle: t′ = γt.

L
(p)
OO′ is the distance between the events O and O′ measured by the observer at rest in S ′ during

the time t′ of the clock at rest in S ′:

LOO′ = vt′ = v
x′

c
(84)

where t′ is the time that light travels the distance x′ (which is the position of event B relative to

S ′), and thus, t′ = x′/c. The observer at rest in S and relative to the events O and O′ measures the

proper distance L(p)OO′ = γLOO′ , based on the length contraction principle. Therefore,

L
(p)
OO′ = γv

x′

c
(85)
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Substituting Eq. (83) and Eq. (85) into Eq. (82), we obtain

ct = γct′ + γv
x′

c
(86)

or

ct = γ (ct′ + βx′) (87)

FIG. 15: S(t, x, y, z) and S′(t′, x′, y′, z′) represent two inertial reference frames. S′ is the moving frame

with constant velocity V along the x axis and S is at rest. Initially(at t = 0), the origins and the axes of

the two frames coincide. A and B are two events occurring at different space-time locations, where A is the

origin of S, therefore, initially at t = 0 A has the coordinates (0, 0, 0, 0), and B at some arbitrary time has

the space-time coordinates (t, x, y, z) and (t′, x′, y′, z′), respectively, at S and S′.

B. Lorentz Coordinates Transformations

Since the inertial frame S ′ is not moving along y and z, there is no effect of the length con-

traction and time dilation along these directions. Therefore, the Lorentz transformations can be

summarised as:

ct = γ (ct′ + βx′) (88)

x = γ (x′ + βct′)
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y = y′

z = z′

Eq. (88) represents the Lorentz coordinate transformations from S ′ to S. To obtain the inverse

Lorentz transformations, we can mutually switch the coordinates with and without prime, and

change the sign before β (that is, β → −β):

ct′ = γ (ct− βx) (89)

x′ = γ (x− βct)

y′ = y

z′ = z

The Lorentz transformations can be generalised for any arbitrary orientation of the velocity of

the moving inertial frame with respect to the axes, as follows for the transformations from the

moving frame S ′ to the frame at rest S:

ct = γ (ct′ + β · r′) (90)

r = r′ +
(β · r′)β(γ − 1)

β2
+ βγct′

Here, the vector β = V/c describes three independent motions of the inertial frame along the x,

y and z axes, respectively:

β = βxi + βyj + βzk (91)

Here, (i, j,k) denote the unit vectors along the x, y, and z axes, respectively. Therefore, Eq. (90)

can be projected along each direction of the motion (namely x, y, and z) as the following, knowing

39



that r′ = x′i + y′j + z′k:

ct = γ (ct′ + (βxi + βyj + βzk) · (x′i + y′j + z′k)) (92)

x = x′ +
(βxi + βyj + βzk) · (x′i + y′j + z′k) βx(γ − 1)

β2
+ βxγct

′

y = y′ +
(βxi + βyj + βzk) · (x′i + y′j + z′k) βy(γ − 1)

β2
+ βyγct

′

z = z′ +
(βxi + βyj + βzk) · (x′i + y′j + z′k) βz(γ − 1)

β2
+ βzγct

′

Assuming that the motions along x, y and z axes are independent, then

along x-axis: β = βxi (93)

along y-axis: β = βyj

along z-axis: β = βzk

Hence, if the motion of the inertial frame is along the x-axis, βy = βz = 0, and Eq. (90) reduces to

Eq. (88). If the motion of the inertial frame is along the y-axis, βx = βz = 0, and Eq. (90) reduces

to

ct = γ (ct′ + βyy
′) (94)

x = x′

y = γ (y′ + βyct
′)

z = z′

Furthermore, if the motion of the inertial frame is along the z-axis, βx = βy = 0, Eq. (90) can be

written as

ct = γ (ct′ + βzz
′) (95)
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x = x′

y = y′

z = γ (z′ + βzct
′)

Similarly, the inverse Lorentz transformations from the frame at rest S to the moving frame S ′

are given as:

ct′ = γ (ct− β · r) (96)

r′ = r +
(β · r)β(γ − 1)

β2
− βγct

C. Lorentz Velocity Transformations

It is straightforward to obtain the Lorentz velocity transformations. For that, we can take the

derivative for the time t in Eq. (90):

dr

dt
=
dr′

dt
+

(
β · dr

′

dt

)
β(γ − 1)

β2
+ βγc

dt′

dt
(97)

From Eq. (96), if we take the derivative for t, we will get

c
dt′

dt
= γ

(
c− β · dr

dt

)
(98)

Combining Eq. (97) with Eq. (98), we find

v =
dr′

dt′
dt′

dt
+

(
β · dr

′

dt′
dt′

dt

)
β(γ − 1)

β2
+ βγ2 (c− β · v) (99)

= v′
γ

c
(c− β · v) +

(
β · v′γ

c
(c− β · v)

)
β(γ − 1)

β2

+ βγ2 (c− β · v)

= γv′ − γ

c
(β · v)v′ +

γ(γ − 1) (β · v′)
β2

β
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− γ(γ − 1) (β · v′) (β · v)

cβ2
β

+ βγ2 (c− β · v)

where v is the velocity measured in S and v′ is the velocity measured in S ′.

Multiplying both sides of Eq. (99) by β, we get

β · v = γ(β · v′)− γ

c
(β · v)(β · v′) + γ(γ − 1) (β · v′) (100)

− γ(γ − 1) (β · v′) (β · v)

c
+ β2γ2c− β2γ2(β · v)

Or,

(β · v)

(
1 +

γ2

c
(β · v′) + β2γ2

)
= γ2(β · v′) + β2γ2c (101)

which is further written as

β · v =
(β · v′) + (β · β)c

1 +
1

c
(β · v′)

(102)

or,

v =
v′ + βc

1 +
1

c
(β · v′)

(103)

For example, for the transformations from the moving frame S ′ to the frame at rest S such that

β = (β, 0, 0), we obtain:

vx =
v′x + βc

1 +
β

c
v′x

(104)

vy = v′y

vz = v′z
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Similarly, the Lorentz velocity transformations for the inverse transformation from the frame at

rest S to the moving frame S ′ are given as:

v′ =
v − βc

1− 1

c
(β · v)

(105)

For β = (β, 0, 0), we obtain

v′x =
vx − βc

1− β

c
vx

(106)

v′y = vy

v′z = vz

Note that for non-relativistic motion (that is, v � c) we have

β

c
→ 0, γ → 1 (107)

Therefore, for this limit it is straightforward to show that the Lorentz transformations converge to

Galilean transformations:

v = v′ + βc (108)

v′ = v − βc

where β = V/c and V is the velocity of inertial reference frame S ′ relative to S.

V. FOUR-DIMENSIONAL VECTORS AND METRIC TENSOR

The following framework is established in this study for the first time (to the best of our knowl-

edge).
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A. Space-time

The basic framework of the special theory of relativity is the space-time and its fibres over

absolute time [14]. The time is an affine space T associated with the vector space T ⊗ R, where

T is the space of future-oriented time intervals and R is the real 1-dimensional space. (Here, ⊗

denotes the tensor product defined in the following.)

In general, a manifold E of the four-dimensional space is a smooth space with local regions

defining a R4 real space for 4-dimensional vectors.

The space-time is an oriented 4-dimensional manifold E fibred over time by the absolute time

map t : E→ T.

Furthermore, we consider the so-called tangent space Et of space-time, consisting of the vectors

tangent to the fibres, which are called space-like. Moreover, we also consider the so-called cotan-

gent space (or the dual space) E∗t of space-time, which is called time-like, consisting of forms

vanishing on tangent vectors.

The local coordinated bases are denoted ωµ and eµ (for µ = 0, 1, 2, 3), respectively, for the

cotangent and tangent space.

B. Four-dimensional Vectors

Often, the notion of the coordinates in four dimensions is introduced to describe the STR, which

may not be all Cartesian coordinates. As such, the so-called 4-vector is introduced, xµ for µ =

0, 1, 2, 3, where x0 = ct is the time coordinate and x1, x2, and x3 are the spatial coordinates.

xµ = (x0, x1, x2, x3) is, in the older notation, the vector itself, also called a contravariant vector:

xµ =
(
x0, x1, x2, x3,

)
= (ct, x, y, z, ) (109)
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On the other hand, xµ is called the covariant vector:

xµ = (x0, x1, x2, x3, ) = (ct,−x,−y,−z, ) (110)

Note that xµ is an element of tangent space, xµ ∈ Et, and xµ is an element of cotangent space,

xµ ∈ E∗t . In some literature, xµ is called a vector and xµ is called a covector or 1-form. In this

paper, we will use the term contravariant (or sometimes simply three-vector and four-vector) for

any geometrical object a ∈ Et with its components labeled with superscripts (such as xµ, T µν) and

covariant for any geometrical object a∗ ∈ E∗t with its components labeled with subscripts (such as

xµ, Tµν).

Then, the Lorentz coordinates transformations given by Eq. (90) from S ′ to S can be written in

more compact form:

x0 = γ
(
(x0)′ − βj(xj)′

)
(111)

xi = (xi)′ − γ − 1

β2

(
βj(x

j)′
)
βi + γβi(x0)′, i = 1, 2, 3

where

βi =
Vi
c

= −V
i

c
, i = 1, 2, 3 (112)

are the covariant spatial components and

βi =
V i

c
, i = 1, 2, 3 (113)

are the contravariant spatial components of three-dimensional vector β. In Eq. (111), note that

when Einstein’s summation notation is used, the repeating indices, one raised and one lowered,

are summed:

aib
i = a1b

1 + a2b
2 + a3b

3 (Latin indices) (114)
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aµb
µ = a0b

0 + a1b
1 + a2b

2 + a3b
3 (Greek indices)

In this paper, the Latin indices (such as i, j, k, l, · · · ) are taking the values 1, 2, 3 and indi-

cate three-dimensional space; the Greek indices (such as µ, ν, σ, λ, · · · ) are taking the values

0, 1, 2, 3 and indicate four-dimensional space-time. Besides, Einstein’s summation notation is

used throughout this paper; the repeating indices, one raised and one lowered, are summed as in

Eq. (114).

Eq. (111) represents the Lorentz transformations of the 4-vector coordinates from S ′ to S. Sim-

ilarly, the Lorentz transformations given by Eq. (96) can be written in the following form to give

the Lorentz transformations of the 4-vector coordinates from S to S ′:

(x0)′ = γ
(
x0 + βjx

j
)

(115)

(xi)′ = xi − γ − 1

β2

(
βjx

j
)
βi − γβix0, i = 1, 2, 3

Often it is required to create a so-called space-time graph, where time (x0 = ct) is one coordi-

nate and the displacement other coordinates (xi for i = 1, 2, 3); often, the space-time graph is also

called the chart (x0, xi), for i = 1, 2, 3.

A path in that space-time graph is called a world-line. The world-line is a one-dimensional

curve in the four-dimensional space-time (see Figure 16), which can be described by a parameter,

namely λ. The world-line represents the motion on the manifold E, which is defined as a one-

dimensional time-like sub-manifold l ⊂ E. The phase space of a classical particle is defined as

the subspace Eu ∈ J(E, 1) of all 1-jet motions. Here, J(E, 1) represents the manifold of 1-jets,

where the 1-jet of one-dimensional sub-manifolds in E at xµ ∈ E is the equivalence class of one-

dimensional sub-manifolds intersecting at xµ with a contact of order one. Projection of J(M, 1)

in manifold E is defined as

P1 : J(E, 1)→ E (116)
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A natural-fibered isomorphism over E of the 1-jets bundle with the Grassmannian bundle of 1-

dimension is generated as

G(E, 1) : ψ → Lψ (117)

where ψ ∈ J(E, 1) and Lψ ⊂ Et(ψ̄), where Et(ψ̄) is the tangent space at ψ̄ = P1(ψ) of 1-

dimensional sub-manifolds generating ψ.

Moreover, ψ = j1l(ψ) ∈ J(E, 1) is in Eu if and only if Lψ = Et,ψ̄l lies inside the light cone. A

motion line l can be expressed locally in terms of a space-time chart xµ as

xi = li(x0) (118)

li : R→ R

Every space-time chart on manifold E is a local fibre chart of the form (xµ;xi0) ∈ Eu (for µ =

0, 1, 2, 3, i = 1, 2, 3), where xi0 is the initial point in the spatial space of the space-time.

FIG. 16: A space-time graph of the observer at rest in S; observer at rest in S′ moving with constant speed

v < c relative to S; world-line of a light ray.

Every point of the world-line can be represented by four coordinates

xµ(λ) ≡
(
x0 (λ) , x1(λ), x2(λ), x3(λ)

)
(119)
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for a given value of λ.

At every point of the world-line, we can draw a tangent vector characterised by a magnitude

and direction, as illustrated in Figure 17. We can determine an event A on the curve, where the

tangent vector is required. Then, we can take any other close-by event B1 on the curve. The arc

length along the curve from A to B1 defines λ. Besides, vAB1 denotes the vector from A to B1. As

the event B1 moves towards A through events B2 and so on, the parameter λ goes to zero; hence

the vector vABi , by definition, converges to the tangent vector at event point A to the curve:

u = lim
λ→0

vABi =

(
dP

dλ

)
λ=0

(120)

with components uµ for µ = 0, 1, 2, 3. Here, vABi = PBi − PA is a 4-vector in a one-dimensional

curve P (λ) in 4-dimensional space-time with tail at the event A and tip at the event Bi on the

curve. Note that the parameter λ is a measure of the length along the curve from A to Bi; hence,

as point Bi moves toward A, the length of the arc and thus λ goes to zero.

FIG. 17: Illustration of the tangent vector to the world-line.

In general, a 4-vector a ∈ Et is defined as a vector aµ (for µ = 0, 1, 2, 3) that has a time-like
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component, a0, and three space-like components, ai (for i = 1, 2, 3):

aµ =
(
a0, ai

)
, i = 1, 2, 3 (121)

which is the so-called contravariant vector. The covariant form of that vector, a∗ ∈ E∗t , is written

as

aµ = (a0, ai) , i = 1, 2, 3 (122)

C. Tangent 4-vector

By definition, Eq. (95) determines the tangent 4-vector at any event of the world-line with

components (u0, u1, u2, u3). Note that the tangent 4-vector of the world-line of a light ray is

such that its square is equal to zero. Furthermore, the tangent 4-vector has no extension in the

Minkowski space-time. The drawn arrows are for illustration. For a time-like curve, the proper

time τ is the parameter λ, and the coordinates in the laboratory frame S are expressed as:

x0 = ct(τ), x1 = x(τ), x2 = y(τ), x3 = z(τ) (123)

D. Basis Vectors

The set of basis vectors can be defined in the four-dimensional space-time given by 4-vectors

eµ (µ = 0, 1, 2, 3) with components such that:

eµ · eν =


0, µ 6= ν

1, µ = ν = 0

−1, µ = ν = 1, 2, 3

(124)

Then, any 4-vector can be expressed in terms of its projections along the set of basis vectors eµ

(for µ = 0, 1, 2, 3). For example, the position (x ∈ Et) of an event on the world-line curve P (τ)
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is defined as

x = xµ(τ)eµ = (ct, r) (125)

where Einstein’s notation is used that the repeated indices, one raised and one lowered, are

summed. That is:

x = xµ(τ)eµ = x0(τ)e0 + x1(τ)e1 + x2(τ)e2 + x3(τ)e3 (126)

That system of the 4-vector basis is called coordinate basis.

E. Four-velocity

The tangent to the curve is the so-called four-velocity, u, of the particle moving along the curve.

Using Eq. (120), we obtain

u0 =
d(ct)

dτ
= γc (127)

ui =
dxi

dτ
= γvi, i = 1, 2, 3

In Eq. (127), vi is the standard three-velocity in the laboratory frame defined as

vi =
dxi

dt
, i = 1, 2, 3 (128)

and v2 = (v1)2 + (v2)2 + (v3)2.

The particle’s 4-velocity (see Eq. (127)) is a function of the parameter λ, and hence a continuous

set of the 4-velocity can be defined once for each value of λ, forming in that way a so-called vector

field.

Also, the 4-velocity given by Eq. (127) can be defined in terms of the coordinate basis vectors

as

u =
dP (τ)

dτ
=
dxµ(τ)

dτ
eµ = uµeµ (129)
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The 4-velocity’s magnitude is a scalar (similar to the three-velocity) with value varying as a

function of parameter λ. The set of magnitude values forms the so-called scalar field.

F. Scalar Product

In general, combination of the covariant vector field a∗ ∈ E∗t with components aµ and a con-

travariant vector field b ∈ Et (a 4-vector) with components bµ gives the quantity 〈a∗,b〉, which is

a number giving the scalar product.

Furthermore, it gives the number of surfaces of a∗ that are pierced by b, and it is given as:

〈a∗,b〉 ≡ a∗ · b = aµb
µ (130)

where the summation of the repeating indices, one raised and one lowered, is assumed.

G. Tensor Product

Scalars, contravariant vectors, and covariant vectors are examples of geometric objects called

tensors. In a tensor, we insert p contravariant vectors and n covariant vectors to make a mapping

onto a scalar. To describe the tensor, we say it has rank

 n

p

 given by the numbers p and n,

where n is the number of possible covariant forms insertions (σ, λ, · · · , β) and p is the number

of possible vector insertions (u, v, · · · , w). For example, the 4-velocity vector uµ = (γc, γv) is a

tensor of rank

 1

0

, since contracting it with a covariant form, uµuµ, gives a scalar, as shown in

the following discussion.

For any two vectors, a and b, a second-rank tensor can be constructed by the operation called

tensor product, T = a⊗ b as the following:

T µν = aµbν (131)
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Tµν = aµbν

Note that the tensor product has as output a number when the two vectors (a,b) and two covariant

forms (α,β) are involved:

(a⊗ b)(α,β) = 〈a,α〉〈b,β〉 (132)

H. Wedge Product

For any two four-vectors a and b (a,b ∈ Et), or two covariant vectors a∗ and b∗ (a∗,b∗ ∈ E∗t ),

the so-called wedge product can be constructed as the following:

T ≡ a ∧ b = a⊗ b− b⊗ a (133)

T∗ ≡ a∗ ∧ b∗ = a∗ ⊗ b∗ − b∗ ⊗ a∗

where ⊗ defines a tensor product as given by Eq. (131) and T ∈ Et ⊗ Et, T∗ ∈ E∗t ⊗ E∗t . The

components of T and T∗ are given as

(a ∧ b)µν = aµbν − bµaν (134)

(a ∧ b)µν = aµbν − bµaν

which indicates that the wedge product is an asymmetric tensor of second-rank.

I. Four-gradient

If we have to deal with scalar fields, for instance, let say φ(x0, r) and φ′((x0)′, r′) are two 4-

scalars measured, respectively, in the inertial frames S and S ′, then φ(x0, r) = φ′((x0)′, r′) (based

on Lorentz invariant principle). That is, the scalar is an invariant quantity. However, its 4-gradient,
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called the 4-gradient of the scalar field, gives a covariant vector defined as:

Aµ =
∂φ(xµ)

∂xµ
≡ ∂µφ(xµ) , (µ = 0, 1, 2, 3) (135)

which transforms as a vector when going from the inertial frame S to S ′, or vice-versa, as described

in the following discussion.

The gradient is an example of the covariant field vector (element of E∗t space), defined as:

∂µ = ∂eµ ≡
∂

∂xµ
(136)

where ∂µ indicates the gradient of a scalar.

J. Dual Coordinate Basis

The gradient of the coordinates, ωµ, is defined as:

ωµ = ∂eνx
µ =

(
∂xµ

∂x0
,
∂xµ

∂x1
,
∂xµ

∂x2
,
∂xµ

∂x3

)
(137)

We obtain that

〈eν ,ωµ〉 = eν · ωµ =
dxµ

dxν
= δ µν (138)

which provides the dual coordinate basis of the dual space. In Eq. (138), δ µν is Kronecker’s

number: δ µν = 1, if µ = ν, and δ µν = 0, if µ 6= ν. Eq. (138) indicates that the vector basis eµ

and the dual coordinate basis ωµ are orthogonal. Therefore, any covariant vector a∗ ∈ E∗t can be

written as

a∗ = aµω
µ (139)

where

aµ = a∗ · eµ (140)
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K. Metric Tensor

A functional form is defined, allowing the conversion of a pair of 4-vectors into a scalar at every

point in space-time. Hence, it determines the magnitude of a 4-vector. Thus, we have to determine

the scalar product of two 4-vectors or the square of the length of a 4-vector. That procedure is

called mapping, and the functional form is called metric tensor, denoted by g∗. The metric tensor

function is the basis vector eµ. For that, assume a four-dimensional space-time oriented manifold

E equipped with a metric tensor, g∗, with signature (+,−,−,−) of the following mapping:

g∗ : E→ L2 ⊗ (E∗t ⊗ E∗t ) (141)

where L is the space of lengths. In coordinates,

gµν = g∗(eµ, eν) = eµ · eν (142)

In the case of the four-dimensional Minkowski space-time with coordinates of a point xµ =

(ct, r), where r = (x, y, z), consider an infinitesimal displacement, dxµ = (cdt, dr). Then, the

relative displacement between the two end points is given as:

ds = dxµeµ (143)

The invariant interval in the four-dimensional Minkowski space-time is defined as:

(ds)2 = ds · ds = (dxµeµ) · (dxνeν) (144)

= dxµdxν(eµ · eν)

= gµνdx
µdxν

Comparing the expression in Eq. (144) with

(ds)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2 = dxµdxµ (145)
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we obtain the metric tensor given as:

g∗ =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(146)

with components given as:

gµν =


1, if µ = ν = 0

−1, if µ = ν = 1, 2, 3

0, if µ 6= ν

(147)

Here, g∗ ∈ E∗t . It is important to notice that the space-time geometry is equipped with a metric

tensor given by Eq. (146). Besides, the metric corresponds to a flat geometry, and hence, for the

spatial dimensions of Minkowski space-time, we use a Galilean coordinate system to represent

the three-dimensional geometry, given by Eq. (145); that is, the spatial dimensions of the space-

time obey the Pythagorean theorem. (Note that Eq. (146) or Eq. (147) can also be obtained by

combining Eq. (142) and Eq. (124).)

Furthermore, comparing Eq. (144) and Eq. (145), we get

dxµ = gµνdx
ν (148)

In general, the scalar product of any two vector fields (4-vectors) a ∈ Et and b ∈ Et is defined as

〈a,b〉 = a · b = gµνa
µbν (149)

= aνb
ν ≡ 〈a∗,b〉

= aµbµ ≡ 〈a,b∗〉

where a∗ ∈ E∗t and b∗ ∈ E∗t .
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If a and b are the same vector fields, then the square of the length of the 4-vector is obtained as:

a · a = a2 = gµνa
µaν = aνa

ν = aµaµ (150)

In Eq. (149) and Eq. (150), the following identities are used for any arbitrary 4-vector aµ ∈ Et for

µ = 0, 1, 2, 3:

aν = gµνa
µ, aµ = gµνa

ν (151)

where aµ are the components of the covariant vector a∗ ∈ E∗t and the symmetry of metric tensor

is used gµν = gνµ.

The inverse metric can be defined as

g−1g ≡ g · g∗ = I (152)

or in terms of the components as

gµνgνσ = δµσ (153)

That is,

gµν = gµν (154)

and g, with signature (+,−,−,−) and components gµν , represents the following mapping:

g : E→ L2 ⊗ (Et ⊗ Et) (155)

Here, I is the diagonal identity matrix. Besides, the components gµν and gµν are dimensionless.

The contravariant vector uµ can be converted into a covariant vector and vice versa as follows:

uµ = gµνuν , uµ = gµνu
ν (156)
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Therefore, for any two 4-vectors a and b (a,b ∈ Et) or covariant vectors a∗ and b∗ (a∗,b∗ ∈

E∗t ), we get

a · b = gµνa
µbν = aνb

ν (157)

= aµbµ = aµbνg
µν

Furthermore, combining Eq. (146) with Eq. (157), we obtain that

a · b = a0b0 − a1b1 − a2b2 − a3b3 (158)

= a0b0 + a1b1 + a2b2 + a3b3

or

a · b = a0b0 + a1b1 + a2b2 + a3b3 (159)

= a0b
0 + a1b

1 + a2b
2 + a3b

3

Using Eq. (158), the square of the magnitude of a vector can be determined as

aµaµ ≡ a2 = (a0)2 − aiai (160)

where the time components are related as a0 = a0 and the space components as ai = −ai:

ai = gijaj = −ai (161)

ai = gija
j = −ai

If the square of the magnitude of a vector is positive, then the vector is called a time-like vector; if

the square of the magnitude of a vector is negative, it is called space-like vector, and if the square

of the magnitude of the vector is zero, then the vector is called a light-like vector.

The space components of a 4-vector, concerning the rotations in Euclidean space that keep the

time constant, form a 3-vector, denoted as a. The time component, concerning the rotations in
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Euclidean space, forms a three-scalar. Thus, the vectors, a ∈ Et and a∗ ∈ E∗t , are also written as:

aµ = (a0, a) (162)

aµ = (a0,−a)

In general, any 4-vector a ∈ Et can be written in terms of the basis vector, eµ (for µ = 0, 1, 2, 3),

as shown in the following discussion, as:

a = (a0, a1, a2, a3) (163)

= a0e0 + a1e1 + a2e2 + a3e3

= aµeµ

where the summation of repeating indices, one raised and one lowered, is assumed.

The square of the magnitude of the four-velocity in any coordinate system is obtained as:

u · u = u2 = gµνu
µuν (164)

= (u0)2 − (u1)2 − (u2)2 − (u3)2

where the four-velocity is u = (γc, γv) (see Eq. (127)). Therefore, we get

u · u = γ2c2 − γ2v2 = c2 (165)

which gives the square of the 4-velocity magnitude of a particle moving with speed v in an inertial

reference frame at rest relative to the particle. Eq. (165) indicates that the four-velocity is a time-

like type of vector field and that the square of the 4-velocity magnitude is a Lorentz invariant (i.e.,

it is independent of the Lorentz system).

Any tensor of rank

 n

p

 can be converted using the metric tensor gµν as:

T µσν = gγνT
µγ
σ (166)
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L. The 4-divergence

In Minkowski space-time, the 4-divergence operator, often denoted by either ∇ or �, has the

following components:

�µ ≡ ∇µ =
∂

∂xµ
ωµ =

(
∂

∂x0
,∇
)

(167)

where ∇ is three-dimensional divergence operator:

∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
(168)

≡
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
ωµ is the set of dual coordinate basis.

For example, if we consider a contravariant vector A ∈ Et, which can be expressed as

A = Aνeν (169)

Then, the 4-divergence of the 4-vector A is given as

∇ ·A =
∂Aν

∂xµ
(ωµ · eν) =

∂Aµ

∂xµ
≡ ∇µA

µ (170)

=
∂A0

∂x0
+
∂A1

∂x1
+
∂A2

∂x2
+
∂A3

∂x3

=
1

c

∂A0

∂t
+
∂A1

∂x1
+
∂A2

∂x2
+
∂A3

∂x3

where the orthogonality of ωµ and eν given by Eq. (138) is used.

In contravariant form, the divergence can be obtained using the metric tensor as follows:

∇µ = gµσ∇σ =
∂

∂xµ
=

(
∂

∂x0
,−∇

)
(171)

The contravariant divergence of the 4-vector A is given as

∇µAµ =
∂Aµ

∂xµ
(172)
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=
∂A0

∂x0

+
∂A1

∂x1

+
∂A2

∂x2

+
∂A3

∂x3

=
1

c

∂A0

∂t
−
(
∂A1

∂x1
+
∂A2

∂x2
+
∂A3

∂x3

)

The operator ∇2, or �2, is called the d’Alembertian operator defined as:

�2 = ∇2 = ∇ ·∇ = gµν
∂

∂xµ
∂

∂xν
(173)

=
∂2

∂(x0)2
−
(

∂2

∂(x1)2
+

∂2

∂(x2)2
+

∂2

∂(x3)2

)
≡ 1

c2

∂2

∂t2
−
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

Note that the ∇2 operator applies to a four-dimensional scalar field.

M. Four-momentum

By definition, the linear four-momentum in any Lorentz coordinate system is defined by

p = mu (174)

where m is the scalar mass, and u is the 4-velocity given by Eq. (127). Therefore, the time and

space components of the linear 4-momentum are as follows:

p = (γmc, γmv) =

(
E

c
,P

)
(175)

where P is the three-dimensional momentum and E is the total relativistic energy. Hence,

p0 = γmc, pi = γmvi, i = 1, 2, 3 (176)

The square of the magnitude of the linear 4-momentum is

p · p = (mu) · (mu) = m2c2 (177)

60



Eq. (177) indicates that the square of the linear 4-momentum magnitude is a Lorentz invariant (i.e.,

it is independent of the Lorentz system).

It can be seen that for particle velocity much less than the speed of light c, that is v � c, then

γ =
1√

1− v2

c2

→ 1 (178)

and hence the space component of the 4-momentum reduces to the non-relativistic linear three-

momentum mv.

The covariant vector of the four-momentum is given as:

p0 = γmc, pi = −γmvi, i = 1, 2, 3 (179)

The square of the magnitude of the 4-momentum can also be written as

p · p = gµνp
µpν = pνp

ν = pµpµ (180)

N. Forces in the Special Theory of Relativity

The 4-velocity and 4-momentum are related to the kinematics of the special theory of relativity.

In the following, we will describe the dynamics of the STR. In particular, we will assume that

Newton’s laws are valid for the objects at rest in the rest observer frame, and they are only approx-

imately correct for the objects moving with speed v such that v � c. We introduce the four-force

law in analogy to the generalisation of the four-velocity from the three-velocity.

Thus, by definition, the proper generalisation of the second law of Newton is given as fol-

lows [16]:

dpµ

dτ
= Kµ, µ = 0, 1, 2, 3 (181)
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In Eq. (181), Kµ is the 4-vector force, also known as the Minkowski force. Note that the spatial

components of the 4-vector force components (i.e., Ki, for i = 1, 2, 3) are not the components of

the three-vector force in the form

F i =
d(mvi)

dt
, i = 1, 2, 3 (182)

The exact form can be derived using the Lorentz transformations of the forces present in the

system. However, they reduce to the force F i in the limit of the non-relativistic particles, that is,

for v � c (or equivalently β → 0). The time component of the 4-vector force relates to the rate of

change of the particle’s energy for any reference frame as follows:

K0 =
γ

c

dE

dt
(183)

and the spatial components obey Newton’s second law in the form:

γ
dpi

dt
= γF i (184)

Moreover, the magnitude of the 4-vector force is determined by its square, given as:

K ·K = K2 = gµνK
µKν = −F 2

Newtonian (185)

where FNewtonian is the magnitude of the three-vector Newtonian force.

There is no unique way to determine the expression of the proper relativistic force. Electromag-

netism can justify the special theory of relativity, and it is possible to relate the electromagnetism

forces to relativistic forces [15, 19].

Relating other forces in nature to Minkowski’s relativistic force remains a problem. Often, two

methods are argued to provide acceptable transformation of the properties of forces and hence

give a correct relativistic form of the forces. The first one consists of accepting that there are

only four fundamental forces in nature, namely gravitational, weak nuclear, electromagnetic, and
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strong nuclear forces. Then, a relativistic theory should be able to derive the correct expressions

for each of these forces in a covariant form such that the properties of these forces are transferred

correctly. The expressions of the forces given in their covariant form, valid in one inertial frame,

can be assumed to be correct in all inertial frames. As such, they do not need to involve terms of

the form (v/c)3 that can vanish in some frame. The efforts continue [16].

The second method on determining the correct expression for relativistic force is to assume that

the force can be defined as the rate of change of the momentum:

dpi

dt
= F i, i = 1, 2, 3 (186)

In Eq. (186), pi is the relativistic generalisation of the Newtonian non-relativistic momentum,

given as

pi = γmvi (187)

Thus, it reduces to mvi in the limit of v � c. Note that this approach has failed to give any results

other than those predicted using the first method so far.

VI. LORENTZ TRANSFORMATIONS TENSOR

The Lorentz transformations of the coordinates can be given in terms of the basis vectors.

For that, we consider two frames of coordinates, namely the frame S with coordinates xµ

(µ = 0, 1, 2, 3) and the frame S ′ with coordinates (xµ)′ (µ = 0, 1, 2, 3). Then, the Lorentz trans-

formations from S to S ′ can be written as:

(xµ)′ = Lµνx
ν (188)
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where

L =



γ −γβx −γβy −γβz

−γβx 1 + (γ − 1)
β2
x

β2
(γ − 1)

βxβy
β2

(γ − 1)
βxβz
β2

−γβy (γ − 1)
βyβx
β2

1 + (γ − 1)
β2
y

β2
(γ − 1)

βyβz
β2

−γβz (γ − 1)
βzβx
β2

(γ − 1)
βzβy
β2

1 + (γ − 1)
β2
z

β2


(189)

is the so-called Lorentz transformation tensor with components Lµν . It can be seen that L is a

symmetric matrix.

On the other hand, the Lorentz transformations from the coordinates in the frame S ′ to those in

S are given as:

xµ = (Lµν)
′ (xν)′ (190)

where

L′ =



γ γβx γβy γβz

γβx 1 + (γ − 1)
β2
x

β2
(γ − 1)

βxβy
β2

(γ − 1)
βxβz
β2

γβy (γ − 1)
βyβx
β2

1 + (γ − 1)
β2
y

β2
(γ − 1)

βyβz
β2

γβz (γ − 1)
βzβx
β2

(γ − 1)
βzβy
β2

1 + (γ − 1)
β2
z

β2


(191)

is the so-called inverse Lorentz transformation tensor, which can be obtained using Eq. (189), by

replacing β with −β.

It is easy to show that

LL′ = L′L = I (192)

where I is a unitary diagonal matrix.

Following [12], a physical quantity can be defined in terms of Aµ and Aµ′, respectively, in the

inertial frame S and S ′, if between them there exists a relation as follows:

Aµ′ = LµνA
ν (193)
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which is similar to Eq. (188). That is, Lµν is given as

Lµν =
∂xµ′

∂xν
(194)

Then, the quantity Aµ is referred to as a contravariant vector in four-dimensional space. Fur-

thermore, if Aµ(x) is a function of the point x in four-dimensional space, then Aµ(x) is called a

contravariant field vector.

Moreover, if the quantity Bµ is transferred from the inertial frame S to S ′ according to

B′µ =
∂xν

∂xµ′
Bν = L ν

µ Bν (195)

then Bµ is called a covariant vector, and if Bµ(x) is a function of the point x in four-dimensional

space, Bµ is called a covariant field vector. Note that

L ν
µ = gµαL

α
βg

βν (196)

Now, if we consider a second rank tensor, Cµν = AµBν , that transforms from inertial frame S

to S ′ according to

Cµν′ = Aµ′Bν′ =
∂xµ′

∂xα
Aα

∂xν′

∂xβ
Bβ =

∂xµ′

∂xα
∂xν′

∂xβ
Cαβ (197)

= LµαL
ν
βC

αβ

Then, Cµν is referred to as a contravariant second-rank tensor. Similarly, a second rank tensor,

Cµν = AµBν , that transforms as follows, is called a covariant second-rank tensor:

C ′µν = A′µB
′
ν =

∂xα

∂xµ′
Aα

∂xβ

∂xν′
Bβ =

∂xα

∂xµ′
∂xβ

∂xν′
Cαβ (198)

= L α
µ L

β
ν Cαβ

VII. CONSERVATION LAWS

The expression given by Eq. (186) is a reasonable relativistic form of Newton’s second law

because it preserves the classical mechanics in the limit of non-relativistic particles, that is v � c,
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and furthermore, it requires the conservation of the linear momentum for an isolated system of

a relativistic system of particles. Since the system is isolated, the total force is zero. Consider a

system of two particles, namely A and B. Suppose that FAB is the relativistic force exerted by

particleA on particleB, and FBA is the force exerted by particleB on particleA. Using Eq. (186),

we get

dpA
dt

= FBA (199)

dpB
dt

= FAB

where pA and pB are the relativistic three-momenta of the particle A and B, respectively. Since,

FAB + FBA = 0, then

dpA
dt

+
dpB
dt

= 0 (200)

or equivalently

d(pA + pB)

dt
= 0 (201)

Eq. (201) indicates that

pA + pB = constant (202)

Therefore, we can write that the linear momentum 4-vectors are equal before and after a physical

process (such as a collision). That is, in terms of the components of the 4-momentum, we have:

(pµ)before = (pµ)after, µ = 0, 1, 2, 3 (203)

That is known as the principle of the conservation law of the linear momentum 4-vector.

It is important to note that the momentum 4-vector is not Lorentz transformation invariant;

hence, it depends on the Lorentz system. Therefore, it transfers as a common 4-vector from a
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Lorentz system (such as S) to another one (such as S ′) according to:

(pµ)′ = Lµνp
ν , µ = 0, 1, 2, 3 (204)

However, it is possible to find a measure that involves pµ, which is invariant under the Lorentz

transformation, and hence it is independent of the Lorentz system. That is, the square of the

momentum 4-vector magnitude, p · p given as

p · p = gµνp
µpν = pµpµ = pνp

ν (205)

The conservation of the square of the momentum 4-vector magnitude under the Lorentz transfor-

mation is written as:

pµpµ = (pµ)′(pµ)′ (206)

where pµpµ is measured in the S frame and (pµ)′(pµ)′ is measured in the frame S ′.

Note that, as we will show when introducing the total relativistic energy, the conservation law of

the momentum 4-vector is equivalent to two conservation principles in non-relativistic mechanics,

namely the conservation of mechanical energy and linear momentum. That is, since the time

component of the 4-momentum (p0) is related to the system’s total energy and spatial components

with the three-momentum.

VIII. CONCLUSIONS

This study presents a pedagogical framework that can be incorporated into the syllabi of physics

courses for teaching Galilean and Lorentz transformations, as well as the special theory of rela-

tivity at various levels of high school and undergraduate university curricula. This study aims to

facilitate a gradual transition from secondary school to careers in science, technology, engineering,

and mathematics.
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In particular, it aims to create an in-class material by balancing the mathematical skills neces-

sary to gain an understanding of modern physics concepts, hence creating a teaching material that

focuses on coaching a self-directed curiosity on real-world issues and, at the same time, encour-

aging social interaction in the process of learning [20, 21].
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