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The problem of a solid sphere with uniform volume charge density is encountered in virtually
all undergraduate calculus-based physics textbooks dealing with the topic of electromagnetism.
This example illustrates well the use of Gauss’s law and from there one can easily derive all the
quantities of interest such as electrostatic field, potential, self-energy, and so on. Undergraduate
physics majors are also well aware of the theory of Fourier transforms from having taken mathematics
courses. Nevertheless, despite its great utility, the Fourier transform method is rarely mentioned as
a powerful tool to solve physics problems at this level. To address this shortcoming, in this work
we propose a possible scenario which may allow an instructor to introduce this powerful method to
a proper undergraduate audience without any major pedagogical drawback. The case study that
we choose is that of a solid sphere with uniform volume charge density. Specifically, we show the
calculation of its electrostatic self-energy by using Fourier transform techniques. The main idea of
this work is to draw reader’s attention to the versatility of the approach that can, in principle, be
applied to other more geometrically complicated bodies where Gauss’s law does not lead to simple
solutions. Concurrently, this work also provides instructional approaches that intertwine content-
specific and pedagogical viewpoints that can be useful to all undergraduate students and teachers

who wish to enhance their command of the subject.
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I. INTRODUCTION

The Fourier transform method is one of the most useful
tools to solve a large variety of problems in mathemat-
ics, physics and engineering. Its usefulness has been ex-
tended to many fields such as electromagnetism?®, sensor
technologies? and quantum mechanics® ®. Undergrad-
uate students in physics get a first glimpse of it when
they take mathematical courses and, typically, see it as
a useful method to solve differential equations®. De-
spite its great efficacy and wide applications, the Fourier
transform method is rarely mentioned or used in typi-
cal calculus-based physics textbooks. We certainly agree
that it is not a good idea to introduce this method way
too early in a physics curriculum. However, by the same
token, we do not see a strong reason why such a method
is not introduced at least as a sole case study in advanced
calculus-based physics courses that deal with electromag-
netism phenomena’ '2. At this juncture of their aca-
demic degree program many undergraduate physics stu-
dents have already studied the Fourier transform method
in their mathematics courses.

In our opinion, this is a shortcoming that can be and
should be addressed in calculus-based physics textbooks
dealing with concepts of electromagnetism. Such text-
books already have very good case studies where at least
one of them can be used to illustrate the formalism and
implementation of the Fourier transform method in this
context. After browsing the widely available literature,
we identified one particular familiar problem covered vir-
tually in all calculus-based physics textbooks dealing
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with electromagnetism that can serve as a case study to
illustrate the use of the Fourier transform method. This
is the problem of a solid sphere with uniform volume
charge density where the calculation of its electrostatic
field, electrostatic potential and electrostatic self-energy
is well known. Symmetry arguments enable Gauss’s law
application and from there one easily obtains the result
for the electrostatic field at any arbitrary point in space.
Obviously, the rest of the quantities, namely, the electro-
static potential and self-energy follow from basic formulas
of electromagnetism.

Therefore, in this work, we reconsider the problem of a
solid sphere with uniform volume charge density and ex-
plain pedagogically all the steps required to calculate its
electrostatic self-energy by using Fourier transform tech-
niques. We choose to use the Fourier transform method
for the calculation of the self-energy to stress out the
point that the Fourier method is not only useful to solve
differential equations, but it also represents a very versa-
tile tool to calculate complicated multi-variable integrals.
In particular, we show for the case of a solid sphere with
uniform volume charge density, how a 6-dimensional in-
tegral representing its self-energy can be reduced to a
much more amenable form. The approach is very gen-
eral and can be applied to more complicated bodies where
Gauss’s law does not help. Overall, the focus of our work
is not to draw reader’s attention to the difficulty of the
problem solved. On the contrary, our main goal is to
draw reader’s attention to the methodology used and to
the versatility of the approach that can, in principle, be
applied to other charged bodies with a geometry differ-
ent from that of a solid sphere’®'7. In addition, use of



different methods to solve a given problem, many times
leads to interesting insights or prospects to open a new
discussion. For example, the Fourier method treatment
shown in this work provides a good refresher of integra-
tion techniques as well as the opportunity to talk to un-
dergraduate students about a class of special functions
known as spherical Bessel functions if one choses to do
S0.

The paper is organized as follows: In Section II we
provide a quick discussion of known results for the case
of a solid sphere with uniform volume charge density. In
Section I1I we explain the Fourier method formalism and
provide an easy to follow implementation of the method
to solve the problem at hand. In Section IV we discuss
the usefulness of the method from a pedagogical point of
view and provide some concluding remarks.

II. SOLID SPHERE WITH UNIFORM VOLUME
CHARGE DENSITY

Let’s now consider the case study of a solid sphere with
uniform volume charge density. We assume that the solid
sphere has radius, R and contains a total positive charge,
@ that is spread uniformly over its volume. The result is
a constant uniform volume charge density:
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p =
For convenience, one chooses a spherical system of co-
ordinates with origin at the center of the solid sphere.
Gauss’s law allows one to obtain quite easily the electro-
static field of this body given its high symmetry. The
result is well known. The electrostatic field vector cre-
ated by a uniformly charged solid sphere has only a radial
component with magnitude, E(r) = |E()| written as:

k;%BQ r ;3 0<r<R,
E(r) = (2)
k2 R<r<oo,
where r = |f] > 0 is the radial distance and k. =

1/(4mep) is Coulomb’s electric constant The calcula-
tion of the electrostatic potential, V (r) follows directly
from E(r). The process is well explained in virtually all
calculus-based physics textbooks. Basically, the starting
point is the result:

I ;o dV(r)=—E(r)dr. (3)
To obtain V() one has to integrate over E(r) and enforce
the continuity of V(r) all over the space for 0 < r < oo.
The final expression is:

,',,2
k;g (3_W) i 0<r<R,
Vi(r)= (4)
kGQ

i R<r<oo.
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The total electrostatic energy (self-energy) of a three-
dimensional (3D) body with continuous but non-uniform
charge distribution can be generally written as:

/d3 /d3 / p|:‘)pql|) , (5)

where p(7) is the volume charge density at the spec-
ified location, 2 is a given volume domain containing
the charge, p(7) d®r and p(7') dr’ represent elementary
charges located around points 7 and 7/, respectively, d>r
and d3r’ represent elementary volumes and #* and 7/ are
3D position vectors. As far as notation, the elementary
volume in the literature is commonly Written in various
forms as d3r = d37 = dr = da dy dz = r? sin(6) dy df dr,
where the last two equalities are in Cartesian and spher-
ical coordinates, respectively.

Having all the results at disposal allows one to calcu-
late the electrostatic self-energy of the uniformly charged
solid sphere by various ways. For example, if one wants
to calculate U from the electrostatic potential, the follow-
ing expression that applies to a constant uniform volume
charge density leads to:

/dSTV

The same result as in Eq.(6) will be obtained if one cal-
culates U from the electrostatic field:

v=3 d*r B, (7)
2 All Space

where now the integral is over all space (not confined to

the volume region, Q).

At this juncture, we may want to pause for a while
and point out a crucial point. The reason why this ap-
proach works hinges solely on the fact that Gauss’s law
makes it very easy to calculate the electrostatic field (and
from there the electrostatic potential). Had the body un-
der consideration been a uniformly charged solid ellipsoid
(but not a solid sphere) or a uniformly charged disk, then
there is no way to solve this problem via this approach
since Gauss’s law will not tell us much about the elec-
trostatic field. For all these situations, different meth-
ods should be applied where, in our opinion, the Fourier
transform method stands out for its elegance and gener-
ality.

IIT. FOURIER TRANSFOM METHOD
SOLUTION

Let’s now change the formalism a little bit and rewrite
the expression for the electrostatic self-energy as:

kepQ/ 3 / 3 1
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where p represents a uniform volume charge density and
2 is the region containing the charge which, in 3D spher-
ical coordinates, is given as:

Q {0§T§R;O§9§7T;0§<p<277}. (9)

The slight change of notation in Eq.(8) relative to the
original definition in Eq.(5) concerns the introduction of
two new dummy variables denoted 7; and 75 and not 7
and 7’ as before. Note that we also used the fact that
the volume charge density is uniform when we wrote the
expression for U in Eq.(8) (in other words, p was moved
out of the integral sign since it is a constant).

The quantity in Eq.(8) involves a complicated 6-
dimensional integral. This is precisely the moment we
were waiting for. The Fourier transform method will al-
low us to calculate the above 6-dimensional integral in a
straightforward and elegant way. Furthermore, the ap-
proach is general and not specific to this particular case
study.

To start with, let’s define the pair of 3D Fourier trans-
forms as:

F(E) :fd3r exp (ZEF) [IGE
(10)

1) = s [ dk exp (=il -7) F(R) | ‘

where F(k) is the 3D Fourier transform of f(7), whereby
k and 7 are 3D vectors, i = \/—1 is the imaginary unit
and the integration extends over all space. Note that
we are explicitly using the dot product notation for the
scalar product of any two vectors. We leave it as an exer-
cise to the reader to verify that the 3D Fourier transform
of function f(7) = 1/|7] is function F(k) = 47/|k|2. In
other words, one has:

Zl_.i:/dg’rexp(iéf') i (11)

This means that, based on the second formula in Eq.(10),
one can write:

1 1 . Ar
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(12)
By substituting the result from Eq.(12) into Eq.(8) and
reordering the integrals one obtains:

_kep? &k 4w 3 3
U= 5 /(2773 =l /zd o) exp(—zk ™ /dT2 exp(—Hk; 7‘2) , (13)

where, for simplicity, we denoted k = |k| > 0.

At this juncture, the first important remark is to note
that the Fourier transform method approach is general
up to this point and does not depend on the specific
geometry of the body under consideration. The second
inportant remark is to note that the approach allows one
to simplify a complicated 6-dimensional integral (over 3D
variables 7 and and 75) into much simpler 3D integrals
(albeit, with an added number of them). From now on
the calculations are straightforward. Note the appear-
ance in Eq.(13) of the following integral:

/Qd3r exp (ii k- F) . (14)

This integral is calculated in Appendix A and the result
is:

sin(k R) — (k R) cos(k R)

3 A 3
/erexp(:lzzk-r>—47rR k R)>

(15)
With help from Eq.(15), one can write the expression in

(

Eq.(13) as
 kep? 5 d®k 47 |sin(k R) — (k R) cos(k R) ’
U==5- (R /(2@31@[ (kR)

(16)
It is easy to see from Eq.(1) that p47 R?® = 3Q. This
allows us to write:

ke d®k 4 |sin(kR) — (kR) cos(k R) ’
=5 (3 /(27r)3 kQ[ (k R)?

(17)
The integral in Eq.(17) is elementary. One writes d3k =
47k?dk and by introducing a dummy variable z = k R

one has:
9 k. Q? >
U=t [ e (18)

where f(z) represents the following auxiliary function:

sin(x) — x cos(x) -

f(z) =

We leave it to the reader to verify that fooo dx [f(z)]? =
m/15. As a result, the electrostatic self-energy value in

- (19)




Eq.(18) becomes :

3 ke Q?

U:g

(20)

This is the expected result for the electrostatic self-energy
of a solid sphere with uniform volume charge density. As
already stated, the Fourier transform method is useful
not because it can solve this specific case study, but be-
cause it serves as a powerful tool to solve much more
complicated problems in which charge distributions have
neither spherical, nor cylindrical symmetry. For instance,
the electrostatic self-energy of a uniformly charged ellip-
tical plate'® has been calculated by adopting the same
procedure bearing in mind the only straightforward mod-
ifications that come from a lower dimensionality. There-
fore, we take the opportunity to reinforce the point that
the same Fourier transform formalism sketched out here
can be adopted to obtain the self-energy of other more
complicated bodies such as uniformly charged solid ellip-
soids, uniformly charged elliptical disks and likewise.

IV. DISCUSSION AND CONCLUSIONS

In this work we show how to use the Fourier transform
method as a powerful tool to solve problems that arise in
a typical calculus-based physics course that covers topics
of electromagnetism. Such a method is well known to un-
dergraduate students from various courses in mathemat-
ics, but its implementation is lacking in physics textbooks
at this level. The idea is not to use the method to solve a
particularly challenging problem, but to illustrate its im-
plementation through a well thought example. With this
in mind, we zeroed in on the case study of the electro-
static self-energy of a solid sphere with uniform volume
charge density which fits well this mindset. This model is
very common and appears in virtually all calculus-based
physics books in electromagnetism.

As illustrated in a detailed pedagogical way, the
Fourier transform method is general and, in principle,
applies to any arbitrary shape for a given charged body.
Another very important result to have in mind is that the
Fourier transform approach always allows one to simplify
the rather challenging 6-dimensional self-energy integral
(integration over 3D variables 7 and and 75 within the
volume of the body) into simpler 3D integral pieces (in-
tegration within the volume of the same body). This is
a considerable reduction of the difficulty of the problem
given that 3D integrals over a typical regular body gener-
ally lead to analytical results. On the other hand, this is
also a useful simplification for numerical calculations®-22
of the electrostatic self-energy of charged bodies with ir-
regular shape since a numerical integration with three
variables can be done faster and more accurately than
its counterpart with six variables.

Another important message to convey is the new per-
spective gained when solving problems using different

methods and approaches. For instance, the current ap-
plication of the Fourier transform method to this specific
problem allows one to cover nicely various integration
techniques for a spherical system of coordinates. This is
always a good refresher for an audience of undergradu-
ate students when it comes to solving physics problems
that involve integrals. On top of that, one may use the
presented opportunity to discuss even more challenging
mathematical topics if the audience is more mathemati-
cally inclined than a typical one. For example, one may
use this occasion to expose an audience of undergradu-
ate students to certain special functions that routinely
are not mentioned at this level. For instance, a keen ob-
server may have immediately noticed that the expression
in Eq.(A8) may be written in a more compact form as:

R kR)
1) = a7 g 21 21
()= 4m B Jp (21)
where
. sinx — x cosx
ji(a) = ——5—, (22)

T

is known as a spherical Bessel function of the first kind.
This is a good moment to impress the audience with the
importance of many types of Bessel functions of vari-
ous kinds?? that show up so often in many science, tech-
nology, engineering and mathematics disciplines. In a
nutshell, this work exposes the appropriate targeted au-
dience to a very useful tool that can be used to enrich
teaching and learning of calculus-based physics at under-
graduate level. In this sense, we believe that the results
reported have clear pedagogical value and may be of in-
terest to the specialized, as well as to the broad audiences
of students and teachers.
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APPENDIX A: INTEGRAL [, d* exp(iu%' : F)
OVER A 3D SOLID SPHERE DOMAIN

Let’s consider the following 3D integral (we consider
first the case with a positive sign):

1(F) = /Qd% exp(+u%'.F) : (A1)

where

Q {OSTSR;OSGSW;O§@<27T}, (A2)



is the integration domain in spherical coordinates. The
solid sphere has a radius R, while E, 7 are 3D vectors and
i = v/—1 is the imaginary unit number. We adopt a 3D
spherical system of coordinates where k is imagined to
lie along the positive z-direction. With this choice of the
system of coordinates, the quantity in Eq.(A1) is written
as:

N R T 2
I(k) :/ der/ do sin@/ dy exp(+ik‘rcos€) ,
0 0 0
(A3)

where k = |k| > 0 and » = |7] > 0. At this point, we
introduce a new variable, t = cos ) and rewrite the term
in Eq.(A3) as:

(%) = (27) /ORdrr2 /_:1 dt exp(—H'krt) . (A4)

One can easily prove that the integration over variable ¢
leads to the following expression:

R .
- sin(kr)
I(F) = (47) / dry2 ST (A5)
0 (k)
By changing to a new dummy variable, z = kr, one
rewrites Eq.(A5) as:
L4 kR
(%) = k%,f / dx x sin(z) . (A6)
0

J

We now use of the standard integration formula:

/dx:v sin(x) = sin(x) — x cos(x) . (AT)

This leads to a final result that we prefer to write as:

sin(k R) — (k R) cos(k R)
(k R)?

I(k) =47 R® [ (A8)

If one recalls that sinz ~ x — 23/3! + 0(z°) and cosz ~
1 — 22/2! + 0(a*) for  ~ 0, then it is easy to verify,
starting from Eq.(A8), that:

L4
lim I(k) = — R® .
k—0 3

(A9)
Note that the quantity I(k) in Eq.(A8) is real. This

means that by complex conjugating both sides of Eq.(A1)
one can easily see that:

/Qd?’r exp(—iE~F) =I(k) =1(k) , (A10)

where the symbol of the asterisk (*) means complex con-
jugation. In a nutshell, we proved that:

(A11)

sin(k R) — (k R) cos(k R)
(k R)?
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