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The classical motion of a charged particle in a uniform constant magnetic field is well-studied in
physics courses. The resulting motion is circular if the magnetic field is perpendicular to the initial
velocity of the particle. The equations of motion involve a set of coupled differential equations whose
solutions are typically not provided in an undergraduate calculus-based physics course. While this is
understandable, it is quite surprising that even the expressions for the coordinates of the center of the
circular orbit in terms of initial conditions are generally missing. Even more specialized textbooks
focused on electromagnetism and analytical mechanics lack the desired details. In this work, we treat
this problem in such a pedagogical way that we believe we are able to address all these shortcomings.
To this effect, we first lay out all the details involved in the standard solution of the problem. We
also provide the expression for the center of the circular orbit in terms of initial position, initial
velocity and cyclotron angular frequency. Secondly, we revisit the problem by introducing another
solution method that uses complex coordinates. This second mathematical approach is elegant and
allows one to study the motion via a single second order linear homogeneous differential equation
with constant complex coefficients rather than two coupled differential equations that are not of
the separated type. The work draws attention to certain pedagogical aspects that require more
attention for a better understanding of this problem.
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I. INTRODUCTION

A uniform constant magnetic field can cause charged
particles to move in circular or helical paths. Examples
of this behavior are plenty such as the circular paths
of protons in particle accelerators, the helical motion of
charged particles in Earth’s atmosphere when they en-
counter Earth’s magnetic field and so on. Motion in
curved paths for charged particles in a magnetic field is
the basis of many important phenomena in science and
technology. The quantum counterpart of this problem
leads to the physics of Landau states and many other
important quantum phenomena [1–13]. Understanding
the classical motion of a charged particle in a uniform
constant magnetic field is relatively straightforward from
the point of view of classical physics. The basis to un-
derstand it lies in the nature of the magnetic force that
enters the Lorentz law expression. The magnetic force
has a direction perpendicular to both the velocity and
the magnetic field and is proportional to the magnitude
of charge. Since the magnetic force is always perpendic-
ular to velocity, it does no work on the charged parti-
cle. As a result, the particle’s kinetic energy and speed
(magnitude of velocity) remain constant. The direction
of motion is affected, but not the speed. This behav-
ior is typical of uniform circular motion. The simplest
case occurs when a charged particle has a velocity that
is perpendicular to a uniform constant magnetic field. In
this case the magnetic force represents the centripetal
force and the charged particle follows a circular trajec-
tory with a given radius and a specific center of rotation.
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This is the description that is routinely found in all un-
dergraduate algebra-based and/or calculus-based physics
textbooks [14–17].

The problem of the classical motion of a charged parti-
cle in a uniform constant magnetic field is also covered in
more advanced electromagnetism/electrodynamics text-
books [18–21]. The provided explanation of the phe-
nomenon is more or less along the same qualitative lines
as already mentioned. As one knows the Newtonian
equations of motion for this case lead to a set of cou-
pled differential equations. The details of the solution
are, presumably, deemed a little bit too technical and are
not provided in a typical undergraduate calculus-based
physics textbook [14–17]. This course of action can be
justified if one argues that simplicity is a paramount ob-
jective. However, it is quite surprising to us, to observe
that some other major details are missing from the gen-
eral solution of this problem. For instance, the expres-
sions for the location of the center of the circle of rotation
in terms of the initial position/velocity and other param-
eters of the system (angular frequency) are never given.
The exact mathematical expression for such a quantity
(that is not very complicated) is remarkably missing from
all the literature surveyed earlier [14–21]. At this stage,
any student has the right to ask the following question:
Assuming that a charged particle is moving in a circle,
what is the formula for the location of the center of this
circle? Obviously, this important parameter is deter-
mined by the initial conditions for position/velocity of
the charged particle in conjunction with other factors
and, at least, must be stated as an important result.
Even other more specialized textbooks that are focused
on analytical mechanics and classical dynamics and have
a higher dose of mathematics do not provide a good an-
swer to this question in sufficient details [22–24].
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Therefore, the purpose of this work is to address these
shortcomings in a pedagogical manner that leads to a
treatment that is attractive to students and researchers
alike. More specifically speaking, this work has two ob-
jectives. The first objective is to provide all the details
of the standard mathematical method that is commonly
used to solve the problem of the circular motion of a
charged particle in a uniform constant magnetic field.
To this effect, we will also derive the expression for the
center of the circular orbit in terms of initial position,
initial velocity and cyclotron angular frequency. This
step-by-step approach will stress key pedagogical facts
that should be part of any treatment of this problem.
The second objective of the work is to revisit the problem
from a different mathematical perspective. To this effect,
we will explain a different solution method of the prob-
lem that uses complex variables [25]. This mathematical
approach is elegant and allows one to study the result-
ing two-dimensional (2D) motion of a charged particle in
a perpendicular magnetic field via a single second order
linear homogeneous differential equation rather than two
coupled differential equations that are not of the sepa-
rated type.

The article is organized as follows. In Section II we in-
troduce the model and explain the details of the standard
solution method. In Section III we describe the details of
a different solution method that uses complex variables.
In Section IV we briefly summarize the key aspects of the
work from a pedagogical point of view.

II. MODEL AND STANDARD SOLUTION

Let us consider a particle of mass m, positive charge
q(> 0) moving in a uniform constant magnetic field. Let
the z-axis be chosen in the direction of the magnetic field:

~B = (0, 0, B) , (1)

where B > 0 is the magnitude of the magnetic field. The
initial position coordinates and initial velocity compo-
nents are chosen, respectively, as:

x(t = 0) = x0 ; y(t = 0) = y0 ; z(t = 0) = z0 = 0 , (2)

and

vx(t = 0) = v0x ; vy(t = 0) = v0y ; vz(t = 0) = v0z = 0 .
(3)

This means that the initial position vector and initial
velocity vector are in the x− y plane while the magnetic
field is perpendicular to them in the positive z-direction.

If ~v is the velocity, the magnetic force ~F = q ~v × ~B will
cause the particle to move in a circle in the x − y plane
as schematically shown in Fig. 1. In order to find the
time-dependent position and time-dependent velocity of
the particle at any moment of time we need to solve the
Newtonian equation:

m
d~v

dt
= q ~v × ~B . (4)
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FIG. 1. A positively charged particle is moving in a uniform
constant magnetic field. The initial position vector and initial
velocity vector are in the x−y plane while the magnetic field is
perpendicular to them. The direction of the magnetic field is
out of the page in the positive z-direction (not shown). When
the velocity of charged particle is perpendicular to a uniform
constant magnetic field, the particle moves in a circular path
in a plane perpendicular to the magnetic field.

It is easy to check that, based on the conditions in
Eq.(1), Eq.(2), Eq.(3) and Eq.(4), there is no dynamics
in the z-direction. This means that vz(t) = v0z = 0 and
z(t) = z0 = 0.

Therefore, the quantities to calculate are the velocity
components on the x−y plane, vx(t), vy(t) and the posi-
tion components on the x− y plane, x(t) and y(t). After
equating like vector components for the x and y direc-
tions in Eq.(4), one obtains the following equations of
motion:  v̇x = +ωc vy

v̇y = −ωc vx ,
(5)

where

ωc =
q B

m
> 0 , (6)

is the so-called cyclotron angular frequency and, in a
short-hand notation, v̇x,y = dvx,y/dt denotes a first
derivative with respect to time.

Typical calculus-based undergraduate physics text-
books do not provide the details of the solution for the
differential equations in Eq.(5). More advanced text-
books such as those focused on classical dynamics [23]
and/or mechanics [24] provide some of the steps. Apart
differences of notation, the common solution method is to
uncouple the coupled simultaneous differential equations
in Eq.(5) by differentiating one of them, for instance, the
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first one in Eq.(5) which becomes: v̈x = +ωc v̇y and use
the other one (v̇y = −ωc vx) to eliminate one of the vari-
ables (in this case, vy). This process leads to the following
differential equation:

v̈x = −ω2
c vx . (7)

This equation has the same form as the differential equa-
tion for a one-dimensional (1D) harmonic oscillator with
angular frequency ωc. It is a second order linear homoge-
neous differential equation with constant coefficients with
the general solution that reads:

vx(t) = c1 cos(ωc t) + c2 sin(ωc t) , (8)

where c1 and c2 are arbitrary constants (for now). Let’s
take the expression for vx(t) in Eq.(8) and use it in the
second equation in Eq.(5):

v̇y = −ωc vx(t) = −ωc c1 cos(ωc t)− ωc c2 sin(ωc t) . (9)

From here one can calculate vy(t) by integration:

vy(t) = −c1 sin(ωc t) + c2 cos(ωc t) + c3 , (10)

where c3 is a new arbitratry integration constant that
comes from the integration and, technically, should be
included. However, the typical approach (without much
of an explanation) is not to incorporate such a constant
hinting to the result that:

c3 = 0 . (11)

The reason why so draws a very legitimate question.
We feel that a careful explanation of this point is fully

warranted. After all, this omission is related to a very
delicate mathematical step that is tacitly implied in the
literature, but is not adequately explained. Therefore,
we believe that this subtle mathematical point is worth
discussing in detail. As made clear throughout this ap-
proach, the results from Eq.(8) and Eq.(10) were ob-
tained by initially differentiating the first equation in
Eq.(5). Differentiating an equation may introduce new
solutions that do not satisfy the original equation. Con-
sider the very simple equation x = 1. Differentiating, we
get ẋ = 0. Its solution is x = c where c is any arbitrary
constant. Note that only for one particular value of the
constant c will this equation satisfy the original equation.
This means that one should make sure to verify that the
two solutions that were obtained by this approach satisfy
the original equations in Eq.(5) by going back to them.
Only by doing so, one sees that vx(t) from Eq.(8) and
vy(t) = −c1 sin(ωc t)+c2 cos(ωc t)+c3 from Eq.(10) sat-
isfy simultaneously the original differential equations in
Eq.(5) only when the condition c3 = 0 is imposed. This
is the reason why the common approach in many cases
is to omit the integration constant c3 and immediately
write vy(t) as:

vy(t) = −c1 sin(ωc t) + c2 cos(ωc t) . (12)

However, the details that lead to such a conclusion are
rarely mentioned. Therefore, we believe that an audience
of undergraduate students and physics teachers need to
be aware of all these mathematical subtleties in order to
have a full mastery of this solution method in case one
attempts to generalize it to other problems.

The specific value of the two arbitrary constants c1
and c2 is determined by the initial conditions in Eq.(3)
leading to: vx(t) = +v0x cos(ωc t) + v0y sin(ωc t)

vy(t) = −v0x sin(ωc t) + v0y cos(ωc t) .
(13)

Integrating vx,y(t) leads to the equations for x(t) and y(t)
written as:  x(t) =

∫
vx(t) dt + xc

y(t) =
∫
vy(t) dt + yc ,

(14)

where xc and yc are two arbitrary constants that come
from the integration. The notation hints to the expecta-
tion that the constants xc and yc will be shown to repre-
sent the coordinates of the center of the circle of rotation
of the charged particle. After completing the integration,
the result reads:

x(t) = xc + v0x
ωc

sin(ωc t)− v0y
ωc

cos(ωc t)

y(t) = yc + v0x

ωc
cos(ωc t) +

v0y
ωc

sin(ωc t) .
(15)

The specific values of the two arbitrary constants xc and
yc are determined from the initial position conditions in
Eq.(2) with the final result:

xc = x0 +
v0y
ωc

yc = y0 − v0x
ωc

.
(16)

Let us now explicitly show that, indeed, xc and yc repre-
sent the coordinates of the center of the circle of rotation
of the charged particle. To that effect, let us rewrite
Eq.(15) as:

x(t)− xc = v0x
ωc

sin(ωc t)− v0y
ωc

cos(ωc t)

y(t)− yc = v0x

ωc
cos(ωc t) +

v0y
ωc

sin(ωc t) .
(17)

It is a trivial exercise to check that:

[x(t)− xc]
2

+ [y(t)− yc]
2

= R2 , (18)

where

R2 =
v20x + v20y

ω2
c

. (19)

Obviously, Eq.(18) represents a circle with center located
at (xc, yc) where the coordinate values, xc and yc are
specified by Eq.(16). The radius of such a circle is R =
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(v20x + v20y)/ωc as specified from Eq.(19). To conclude,

the charged particle’s trajectory in the 2D plane normal

to ~B is, therefore, a circle with center at (xc, yc) and
radius R. As a final remark, one can write the position
coordinates in Eq.(15) in much more compact form as:

x(t) = xc − vy(t)
ωc

y(t) = yc + vx(t)
ωc

,

(20)

where (xc, yc) are given from Eq.(16) and (vx(t), vy(t))
are given from Eq.(13).

III. DIFFERENT METHOD WITH COMPLEX
VARIABLES

Let us now revisit the solution of the coupled simulta-
neous differential equations in Eq.(5) from a different per-
spective. Rather than differentiating one of the equations
as we did earlier, let us multiply both sides of the second
equation in Eq.(5) by the imaginary unit, i =

√
−1 and

rewrite the two quantities as: v̇x = −i ωc (i vy)

i v̇y = −i ωc vx .
(21)

The idea is to solve exactly the system of coupled differ-
ential equations in Eq.(21) by using complex variables.
Adding side by side the expressions in Eq.(21) leads to:

v̇x + i v̇y = −i ωc (vx + i vy) . (22)

At this point, we define a complex 2D position variable
as:

z = x + i y . (23)

We believe that, at this juncture, the readers are well
aware not to confuse the 2D complex variable z defined
in Eq.(23) (or its initial value z0 that will be defined
later, etc.) with the position coordinate in the z direction
that was briefly mentioned earlier in Eq.(2). With this
understanding, the 2D complex velocity reads as: v =
vx + i vy = ż and, similarly, the 2D complex acceleration
can be written as: v̇ = v̇x + i v̇y = z̈. Therefore, one can
rewrite the result in Eq.(22) as:

z̈ + i ωc ż = 0 , (24)

where the initial time conditions for the 2D complex po-
sition and 2D complex velocity are, respectively:

z(t = 0) = z0 = x0 + i y0 , (25)

and

v(t = 0) = v0 = v0x + i v0y . (26)

This means that, without any need to take an extra dif-
ferentiation, we have managed to express the original
system of two coupled differential equations as a single
differential equation in complex notation. The result in
Eq.(24) represents a second order linear homogeneous dif-
ferential equation with constant complex coefficients. If
the constants are complex numbers [26], it is still possi-
ble to find solutions of the form z(t) = exp (r t) where r
satisfies the root equation which in this case is:

r2 + i ωc r = 0 . (27)

The roots of the characteristic equation are r1 = 0 and
r2 = −i ωc. Therefore, the general solution for the 2D
complex position is:

z(t) = c1 + c2 exp (−i ωc t) , (28)

where c1 and c2 are two arbitrary complex constants.
The 2D complex velocity is obtained by differentiating
z(t) in Eq.(28) with respect to time:

v(t) = −i ωc c2 exp (−i ωc t) . (29)

The two complex constants, c1 and c2 are determined
from the initial conditions, z(t = 0) = z0 and v(t = 0) =
v0 which lead to:

c1 + c2 = z0 ; −i ωc c2 = v0 . (30)

As a result the two complex constants c1 and c2 are:

c1 = z0 − i
v0
ωc

; c2 = i
v0
ωc

. (31)

One can write the complex constants, c1 and c2 in terms
of their real and imaginay parts:

c1 = c′1 + i c′′1 ; c2 = c′2 + i c′′2 . (32)

This allows us to obtain:

c′1 = x0 +
v0y
ωc

; c′′1 = y0 −
v0x
ωc

, (33)

and

c′2 = −v0y
ωc

; c′′2 =
v0x
ωc

. (34)

By separating the real and imaginary parts of Eq.(28),
and taking into account that exp(−i ωc t) = cos(ωc t) −
i sin(ωc t), one obtains the positions of the particle, x(t)
and y(t) as a function of time: x(t) = c′1 + c′′2 sin (ωc t) + c′2 cos (ωc t)

y(t) = c′′1 + c′′2 cos (ωc t)− c′2 sin (ωc t) .
(35)

By comparing the results from Eq.(33) to those in
Eq.(16), one immediately identifies: c′1 = xc and c′′1 = yc.
A comparison of the expression from Eq.(35) with con-
stants given from Eq.(33) and Eq.(34) to the expressions
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in Eq.(15) allows one to see that the two results are iden-
tical. One obtains velocities, vx(t) and vy(t) by differen-
tiating the positions x(t) and y(t) with respect to time,
respectively.

At this juncture, we want to point out that the cru-
cial important result obtained by means of this method
is the one for the 2D complex position z(t) in Eq.(28).
This result represents the solution to the second order
linear homogeneous differential equation with constant
complex coefficients in Eq.(24). The rest of the treat-
ment involves straightforward algebraic manipulations
and book-keeping which enables the reader to carefully
check the correctness of the final results. Therefore, the
beauty of this approach is in the elegance of solving the
differential equations of motion in such a way that: (i)
A system of two coupled simultaneous differential equa-
tions is reduced to a single one in complex coordinates;
(ii) There is no need for any additional differentiation of
any of the original differential equations and (iii) The so-
lution of the resulting second order linear homogeneous
differential equation with constant complex coefficients is
elementary.

IV. CONCLUSIONS

The classical motion of a charged particle in a uniform
constant magnetic field is covered in all physics courses
at both the undergraduate and graduate level. The most
interesting scenario that develops is that of circular mo-
tion which arises when the magnetic field is perpendicu-
lar to the initial velocity of the particle. The Newtonian
equations of motion involve a set of coupled differential
equations. The details of the solutions are typically not
given in an undergraduate calculus-based physics course.
While this approach keeps the level of mathematics sim-
ple, it is quite surprising to see that even the expressions
for the coordinates of the center of the circular orbit gen-

erally are not provided. More specialized textbooks fo-
cused on electromagnetism, analytical mechanics or clas-
sical dynamics provide some extra steps when it comes
to the solution of the mathematical problem. However,
some key details and a few subtle explanations are miss-
ing from the treatment.

In this work we fill some of these voids in such a way
that should be appealing to both students and physics
teachers. Firstly, we provide all the key details for the
conventional solution method widely used in the litera-
ture. This process smoothly leads to the expected equa-
tions of motion including the result for the location of the
center of the circular orbit in terms of initial position, ini-
tial velocity and cyclotron angular frequency. Secondly,
we revisit this problem by applying a different mathemat-
ical solution method that uses complex coordinates. In
our view, while being a little bit more demanding (since it
requires some basic knowledge of complex numbers), this
approach is very appealing because of its elegance. More-
over, this method allows one to study the 2D motion of
the charged particle via a single second order linear ho-
mogeneous differential equation with constant complex
coefficients rather than the initial pair of coupled dif-
ferential equations that are not of the separated type.
In a nutshell, this work highlights some key pedagogi-
cal aspects of this problem that require more attention
for a better understanding of the whole treatment. This
means that, in principle, the results of this work should
be welcomed by a broad audience of students, teachers
and researchers working in various scientific disciplines.
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