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In this paper some aspects concerning approximations which can be made in calculating two 

important effects resulting from General Relativity, namely the perihelion shift of planets 

moving around the Sun (Mercury) and bending of starlight observed on Earth grazing the 

apparent Sun’s disc in its trajectory are discussed. The simplifications are presented in the 

paper and comparison is made between Njutonian, so called “eclectic” and GR approach. As 

a particular case of approximation a perihelion shift quantity between “eclectic” approach and 

correct GR could be found. Schwarzschild solution and Lagrangian approaches are 

throughout used in this paper. The discussion presented here seems to the author to be of 

pedagogical importance in teaching General Relativity in undergraduate level.  

 

 

I. Introduction 

 

           It is well known that the so-called “classic” historic relativistic effects in General 

Relativity-GR, such as gravitational redshift of spectral lines, perihelion shift of planets and  

bending of light in the field of the Sun are “quite naturally” derived in many standard 

textbooks from the Schwarzschild metric and the use of geodesic equation: see for example2,4,8.  

The Schwarzschild metric and corresponding geodesic equation are*  
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In these formulae, we note the so-called Schwarzschild radius McGMrS 2/¤2 2   with 

2/¤ cGMM  -  mass of the Sun in geometrized units- and a geodesic parameter k, properly 

chosen for deriving these effects and not only. Spatial coordinates are ,,r -respectively 

radial, polar and azimuthal coordinate.  

The equations of the motion of massive particles or massless ones (photons) are derived from a 

Lagrangian below†:  

                                                             


 xxgL                   (3),   

                                                          

where the dot is used to express the derivative of generalized coordinates (space time 

coordinates) in respect to the geodesic parameter and  xg  is the fundamental metric tensor. 

            It is well known1 that Newton theory, in the framework of absolute space-time and 

Newtonian gravitational law can qualitatively yield a perihelion shift if, by side of the 

gravitational potential of the order  of ra / , one adds a potential of the order of 
2/ rb , or even 

                                                 
* Throughout in this paper, we use the signature convention (+, -, -, -) 
† We use symbol L  for Lagrangian instead of L which is kept to present angular momentum symbol 
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3/ rc , where  cba ,,  are constants. These parameters should be taken from a basic theory. 

Whereas a  is well defined from the conventional Newtonian Theory, other constants can be 

taken from nowhere, as well as respective potentials of higher order, because we don’t have an 

original basic theory-as far as two body case is concerned, but it has been shown that taking 

into account a perturbation of the orbit caused by  another planet the term of the order 3/ r can 

be obtained5. On the other hand, it has been found that corrections to the inverse-square 

gravitational force law formally similar to that required by general relativity were suggested by 

Clairaut in the 18th century. By the way, in ref.11 the calculation of correct perihelion shift is 

made using complex functions.  

            When teaching relativity to undergraduate students this particular aspect should, in our 

opinion, be emphasized, for obvious pedagogical reasons. We will demonstrate-next in our 

paper, that GR can quite naturally put in evidence such terms as well as respective constants, 

when going to the second approximation, in calculating perihelion shift in a weak gravitational 

field and flat three-dimensional space. We will show that in this framework one can obtain a 

shift which is (2/3)-d of the exact result obtained by full treatment of the problem in the context 

of Schwarzschild metric, made in standard textbooks of GR. In the latter case, we are in the 

realm of curved space-time and three-dimensional curved space.  

In this paper, we discuss the possibility of calculation of some mentioned effects using 

appropriate approximations, in one hand and using some “eclectic” reasoning on the other. 

These calculations and this approach seem to the author to bee illuminating and important from 

a pedagogical point of view at least. 

 

II. Perihelion shift from an "eclectic" point of view 

We show here that one can calculate a perihelion shift based on an "eclectic" reasoning, as we 

call it, combining together the Special Theory of Relativity and Newtonian gravitation. On 

these grounds, we are dealing with a flat three-dimensional space considered in an inertial 

frame with the Sun at the center of space coordinates, an inertial mass changing with its 

velocity and a Newtonian gravitational mass not changing during the motion. This is of course 

a “pure eclectic” reasoning, but still we proceed to derive the effect and compare its result with 

the correct Einsteinian result, which has been successfully confirmed by observation many 

times.   

We start with defining the Lagrangian of the planet in spherical spatial coordinates with the 

Sun at its center which looks like this:                                                                    
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with  dtddtdrr /,/  


, where m is the rest mass of the planet (in our case equal to 

Newtonian gravitational mass), ¤M is the mass of the Sun and r is the radial coordinate. In our 

case coordinate r is also the true distance of the planet from the center of the Sun and not 

simply a radial coordinate as it is in the Schwarzschild metric (1). Other coordinates are polar 

angle   and azimuthal angle  . The time t is a true time of the inertial system of the Sun. The 

planet moves in this time and this inertial system. 

In the case we neglect effects of second order relative to terms cv / , where v  is the velocity of 

the planet, we have an approximate Lagrangian 
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Euler-Lagrange equation for azimuthal angle  t  relating equation (4) is 
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which yields the constant of the motion-the angular moment L     
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We chose as usual the plane of the orbit to be that for .2/ const   

Radial equation is:  
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which from (4) yields: 
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Further, one proceeds as follows.  
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Taking a new function     ru /1 , as one usually makes when discussing Kepler problem, 

and after using (6,6’), we find the differential equation for the new function   u :                                                                                                                       

                                                        22322
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m

L



     

or                                                      

                                                             0/¤'' 22  LmGMuu                             (7)              

By adding together, the kinetic and the potential energy, as to have the formula for the total 

mechanical energy, we have: 

                                                            aumcrmGMmcE  22 /¤             (8),                       

where we have introduced a new constant mGMa ¤ .  

From (8) we have   2/ mcauE   and as a consequence, equation (7) becomes  
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Returning to initial quantities we find:                                                                                                                    
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or                                                                                                               
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where                                                              



 4 

                 
22

222

2 ¤1
Lc

mMG
                                

                   
 
2

2

"





d

ud
u                                      (10) 

Equation (9) solves our problem.  

Being a nonhomogeneous equation, it has the general solution: 
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      sincos CBAu                    (11'),             

where A, B, C are constants.  

For symmetry reasons, we admit a solution which doesn't change with the sign of the azimuthal 

angle, so we take as physically acceptable the solution:                                                                                                   

          cosu A B                                            (11)                   

This is not a pure harmonic motion because of the small factor . In Solar System, this factor is 

very closely equal to 1 because the quantity 1¤
22

222


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mMG
, therefore we can approximate                                                                     
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1 ¤                                     (12)                                                                                

Suppose the first perihelion is situated for 0  ( 0 ), which is related to the minimum 

distance of the planet so u=max. After a full orbit, which means an increase of azimuthal angle 

by 2 , one must add an amount  , in order to have the second perihelion, such as to have 

 2 1    . This is the perihelion shift in this approximation (fig.1) (exaggerated in the 

figure). With   from (12) we find the shift for one “planetary year” equal to:                                                                                                                                      

                                                           
22

222

¤12
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                          (13)                                          

In the case of Mercury, which is the closest planet to the Sun and has a higher velocity, as well 

as for its nearly circular orbit with a radius R and calculating approximately the angular 

momentum L from Newtonian low of gravitation we arrive to the formula                                                                            

                                                                         
R

M
                                        (14), 

where  2c/GMM  is the mass of the Sun in geometrized units.                                                                                                     

We know that the correct formula taken when using General Relativity is 6 times more than 

this one. Observations on Mercury perihelion shift confirm a shift six times bigger2,4,7,8.  In 

ref.  11  calculation of correct perihelion shift is made using complex functions, as stated in the 

introduction. Particularly, in  5  the correct perihelion shift is calculated using Runge-Lenz 

vector. 

 

III. Discussion of perihelion shift in a weak gravitational field making an 

approximation in a flat three dimensional space. 

 

For a week gravitational field, which is the case of Solar System, if we modify only the 

00g component of the metric tensor4 and leave the three dimensional space as flat, we can take 

a Lagrangian of the form                     
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where r/GMN ¤  is the Newtonian gravitational potential, or using the Schwarzschild 

radius M2c/GM2r 2

S  we have 
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The dot expresses the derivative in respect to the true time   (proper time) measured by the 

watch carried along with the planet during the quasi periodic motion of the planet on the 

geodesic. Here we use the Newtonian gravitational potential rGM /¤  and consider the 

motion in "equatorial plane". This is because, as it is shown below, the angular momentum is 

conserved. Here the radial coordinate without any doubt is also the true distance from the 

center.  

It is easy to find, as usual [2,4,6,9,10], conserved quantities-energy and angular momentum. In 

view of (15), we have   2

331100 ;1;/1 rggrrg S  and (3) yields evidently energy and 

angular momentum: 
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We could proceed as before using (15,16) and geodesic equation from the Lagrangian, but in 

this case, it is more convenient to start from the metric (week field and flat three-dimensional 

space) of the form:                                           
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Dividing both sides by 22 dc , where   is now a true time measured by a watch carried with 

the planet we get:               
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Putting here conserved quantities (16) we get the equation below: 
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We calculate again the derivative of both sides with respect to   and get the following 

equation: 
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Because we are dealing with elliptic orbits (almost circular orbits) one can divide by the 

common factor 0


r  (orbits are not exactly circular) and approximating 
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 and going again to the new function     ru /1 , we get the new 

equation: 
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Now we can express 
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 where the relativistic factor   is not anymore present, and 

consequently write the equation which solves our problem:                                                       
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As it is expected, according to the equivalence principle, the mass of the planet is not present.                                                       

Taking again the constant in parentheses in (18) as 
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and reasoning as in the case of the “eclectic” derivation for the perihelion shift we arrive to the 

formula: 
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 Now, we need the ratio LE /  which can be taken from (16) to be  rr
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When calculating periods of stable circular orbits of planets in the central field of the Sun, we 

find effectively three periods i.e. the period in respect to the proper time of the planet; the 

period in respect to the observer situated far away from the center, which corresponds to the 

period in coordinate time and, finally, the period in respect to the observer, situated in a fixed 

point of the field9. It results that all these three periods are very close to each other, as far as we 

are dealing with motions in an orbit with a mean distance much greater not only than the 

Schwarzschild radius but much greater than the distance of the surface of the Sun from the 

center of the field. For example, for Mercury, the mean distance to the Sun is 5.47x1010 m and 

its velocity is 47.4 km/s, whereas the radius of the Sun is about 7x108 m. On the other hand, 

Suns Schwarzschild radius is 3km. It is a completely another story when dealing with motions 

around black holes in which case we can have orbits of radii comparable with the 

Schwarzschild radius. Thus, we will approximate drdtcLE 22 //   and now everything is 

calculated in coordinate time.  Plugging last formula in (18') we get  
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where R is the mean radius of the orbit. Angular velocity of the planet can be calculated from 

Newton theory and finally we get the formula for the shift:  

                                  

                                                              
R

M
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4
                                                    (19)           

 

This is four times bigger the former result but it is 2/3-d of the correct result taken when we 

consider not a flat three-dimensional space but a curved one as it is present in Schwarzschild 

metrics2,4,10. As far as we know, this possible result - RM /4  - hasn’t explicitly been 

reported.  

Had we neglected in (17’) the quantity 2u in respect to 1  i.e. had we taken 12 u  than we 

couldn’t have had the shift as it can be demonstrated quiet easily. This is the same as what we 

could have had, had we have taken what we call quasiNewtonian Lagrangian (in polar 

coordinates in equatorial plane and for unit mass):    
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In the latter case we have the energy for unit mass:                                                
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Up to the additive factor 2c , this is the classical Lagrangian of unit mass in polar coordinates 

in gravitational field (Kepler problem).                                                                             

 

IV. Effective “index of refraction” and bending of light in a week gravitational field  

 

In the case of light propagation in vacuum, in absence of gravitational forces, as well as in 

geometrical optics, Fermat principle is fulfilled (an extremum principle)2. This principle states 

that optical path of light rays is extremum and its variation is zero:     

                                                                                                                                              

                                                        0 
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where A, B are two points where light passes and ckki /0


  (i=1,2,3), where 0k


 is a unit 

vector-three-dimensional wave vector tangent to the ray, which traces a straight line in a flat 

space. The frequency of the light is constant, so we have: 

 

                                                                 
B

A
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(This is equivalent to the assertion that the strait line which passes through two points in space 

is the shortest one).  

In the case of light propagation in presence of a static gravitational field which is the case of 

Sun’s field, one needs the definition of a covariant wave vector and express the same Fermat 

principle for calculating the bending of light. Thus, we define a contra variant wave vector k  

)3,2,1,0(  , of a norm zero in every coordinate system with zero component equal to 

ck /0   as it is in absence of the field2.  

In presence of the field, the true distance between two infinitesimally closed points in three-

dimensional space is:    

          ki

ik dxdxdl 2 i,k=1,2,3                           (21),                          

where ik  are spatial metric components which are related to the spatial components of the full 

four-dimensional metric (static case) according the formula: 

                                                             ikik
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It is easy to show2 that the spatial contra variant components of the wave vector are: 
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Therefore, invariant Fermat principle, from (20) yields:  
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From (21) and cancelling constant quantities we get:  
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Here, the spatial component dl is a true distance.  

Meanwhile, in the case of light propagation in nonhomogeneous continuous media with a real 

index of refraction n (x, y, z) and geometric optics conditions (light rays) in an Euclidian space 

we know that the ray is bent in the direction of grater increase of refraction index in space. 

Fermat principle in this case states that the extremum can be expressed in form3:  

                                             
B

A
dlzyxn 0,,                                           (23)    

We note that we are now proceeding in studying 

light propagation in a flat three dimensional space 

where an “effective” refraction index exists 

changing from point to point of the space.         

From the variational principle used for (23) we take 

the formula which relates the gradient of n (x, y, z) 

with the curvature radius  of the ray3:  

 

 
n
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





1
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Coming back to (22) we know that metric components vary continuously as functions of  

spatial coordinates. Comparing with (23) we can state that in a static gravitational field Fermat 

principle is expressed in the same way as in the case of light propagation in a continuous 

medium if we take as an effective “index of refraction” equal to: 

                                                                      
00

1
,,

g
zyxn                                       (25)         

 

Again, in a weak gravitational field we have the modification 00g component as shown in the 

formula: 

  

                                                                       2

00 /21 cg N                                    (26)             

 

where   rGMrN /  is Newtonian gravitational potential and r is a true distance from the 

center of the field. With (25,26) we have this index of refraction: 

 

                                                                   2/1

00 )/21(/1  rMgrn                  (27)                     

 

which can be approximated as below: 

 

                                                                        )/1( rMrn                                       (28)           

 

This is the index for light propagation in Sun’s week field, where M  is Sun’s mass (in 

geometrized units) and r is the true distance of the photons from its center.  

(We note that a similar functional relation exists between an index of true optical refraction and 

the radial distance r of a point in space from the center of Earth-due to the change of the air 

density. This refraction is responsible for corrections which must be done for star positions in 

Astronomy).  

In (fig.2) we illustrate the situation of bending of light. N


 is the unit vector perpendicular to 

the ray at every point. From differential geometry, we know that   
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                                                                 dld //1    , 

 

where    is the radius of curvature of the ray at the chosen point P.           

                         

We use (24, 28) for solving the problem in the well-known conditions of rays grazing the Sun’s 

disc (Fig.3).   

First, we transform (24) as below: 

  

 

  ]11ln[

ln
1















n
N

n
Nn

nN

dl

d





,                                                                                                                                                                                           

 

where, in our conditions, the quantity 11n .  

 

 

 

Expanding the logarithm to first approximation we get:                                                                      

              

                                                     


















r

M

N
n

Ndl

d
1


                      (29)                 

The impact parameter of light rays or photons is ¤R -Sun’s radius and we take into 

consideration that the deflection of rays is very small.  

Geometry considerations lead to these formulas: 

                  

                


























2cos

dR
dx;

cos

R
r;tgRx;cos

N

y
;

N

y

yN
;

dl

dx
cos ¤¤

¤      (30)       

 

From (27) we get the following relation for the change of azimuthal angle:  

 

       d
R

M
d cos

¤

  

 

The total angle accumulated during the whole path is: 

 

                                         

¤Rc

¤GM2

¤R

M2
dcos

¤R

M
d

2

2/

2/
  




       (29)’        

                

¤R

M2
       (29) 

This is half of the correct result taken when one considers the modification of spatial metrics-

GR correct result.  

From the formula of the approximate interval (17) for radial fall of photons we get in another 

way the refraction coefficient, which will be useful latter. From (17) we get the coordinate 

velocity of light to be 

 

     









r

r
c

r

r
c

dt

dr
v SS

phot
2

11                (30)                            
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From here we have 
n

c

r

r
cv S

phot 









2
1 and the refraction coefficient is the same as 

before  
r2

r
1

r2

r
1rn SS   and   1rn  same as (28).                                                                           

                                                       

V. Bending of light calculated in the case of curved three-dimensional space in a weak 

field approximation (“slightly” curved space time) 

 

In this case we have the formula for the interval in the form4: 

 

                           
     222222

2

22

2

2 dsinrdrdr
c

r2
1dtc

c

r2
1ds 







 








 
      (31), 

 

where   rGMr /¤  is the Newtonian potential; r as usual is the radial coordinate, such as 

to have 222 zyxr  and  ,,r are usual spherical coordinates in three-dimensional 

Euclidian space. 

                                                  

      2222222 sin  drdrdrdl   

 

For radially falling photons in the field ( 0;0   dd ), in this case of curved three-

dimensional space, reasoning same as before we find e light velocity equal to:  

          

  
 
 

   
 rn

c

r

M2
1c2c/21c

22c/1c
2/1

r2c/21

2/1
r2c/21

c
dt

dr

phot
v 



















 




        (31),    

 

neglecting terms of higher order. From here we find the coefficient  

 

                                                                   r/M21rn                                                  (32)                    

 

As a result, in this case, we obtain the correct result: 

 

                                                                      

¤

4

R

M
                                                         (33),               

 

which is the double of the effect respect to the formula (29) 4,8,10. 

In the context of PPN formalism, this result is in accord with this approach if one takes the 

PPN coefficients 1,  8.   

Recently a rather detailed account on this aspect of GR is given in a paper published in  

International Journal of Astronomy and Astrophysics13.  

There are some recent attempts6 according to which the acceleration of a particle (with mass or 

massless ones) in free fall is caused by the refraction of its oscillating components by a cloud 

of exchange particles. These attempts are of course in contrast to general relativity 

considerations trying to find out another origin of gravitation linked to the structure of 

elementary particles and their interactions with ‘’a modern ether’’. According to their claims 

the authors find a coordinate velocity of photons equal to 

p

S

r

r
c 








1  where 1p for radial fall 
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and 2/1p  for tangential motion of photons. It is clear that the case 1p  corresponds to our 

result (31). 
 

VI. Conclusions and discussion   

 
1. Where as strict Newtonian approach doesn’t yield a perihelion shift, the so called ‘’eclectic’’ 

approach corresponding to the Lagrangian (4) yields a perihelion shift of magnitude given by (14) 

which is the 1/6-th of the correct result given by GR. The time in this later approach is the time in the 

inertial Solar system.  

2. In a weak gravitational field, when making a first approximation and keeping the spatial metric flat, 

only modification of the 
00g  component of the metric yields for the shift a quantity given by (19), 

which is 2/3-th of the correct GR result. This possible result hasn’t somewhere been reported as far as 

we know. The time is the proper time of the planet.  

3.  In a weak field approximation for centro symmetric gravitational field, the field itself can be 

considered as a « medium » characterized by an effective index of refraction given by (28) and as a 

consequence we find an amount of bending of light given by (29) which is half of the correct result 

taken by GR and spectacularly verified in 1919.  

4.  The correct result of bending of light can be obtained if one consider the approximate metrics in the 

case of centro symmetric weak field-formula (31) via an effective index of refraction given by (33).  

5.Had we proceeded to make an elementary “eclectic” calculation for the bending of light considering 

gravitational mass of the photons moving in a flat three dimensional space where gravitation of the Sun 

exists (a calculation found in many textbooks), we would have got half of the result (29) instead of 

quarter of the respective result of the shift of perihelion. The reason is that in the case of orbits of 

planets they move all the time at almost same distance from the Sun, while photons come from infinity 

to a finite distance from the Sun and then again move to infinity, thus not “feeling” all the time a strong 

gravitational force.   
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